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Abstract. We study the generalized random Fibonacci sequences defined by their first non-negative terms and for n ≥ 1, Fn+2 =
λFn+1 ± Fn (linear case) and F̃n+2 = |λF̃n+1 ± F̃n| (non-linear case), where each ± sign is independent and either + with
probability p or − with probability 1 − p (0 < p ≤ 1). Our main result is that, when λ is of the form λk = 2 cos(π/k) for some
integer k ≥ 3, the exponential growth of Fn for 0 < p ≤ 1, and of F̃n for 1/k < p ≤ 1, is almost surely positive and given by∫ ∞

0
logx dνk,ρ(x),

where ρ is an explicit function of p depending on the case we consider, taking values in [0,1], and νk,ρ is an explicit probability
distribution on R+ defined inductively on generalized Stern–Brocot intervals. We also provide an integral formula for 0 < p ≤ 1
in the easier case λ ≥ 2. Finally, we study the variations of the exponent as a function of p.

Résumé. On considère les suites de Fibonacci aléatoires généralisées, définies par leurs deux premiers termes (positifs ou nuls) et,
pour n ≥ 1, Fn+2 = λFn+1 ±Fn (cas linéaire) et F̃n+2 = |λF̃n+1 ± F̃n| (cas non-linéaire). Chaque signe ± est choisi indépendem-
ment, + avec probabilité p ou − avec probabilité 1−p (0 < p ≤ 1). Nous montrons que, lorsque λ est de la forme λk = 2 cos(π/k)

pour un entier k ≥ 3, la croissance exponentielle de Fn pour 0 < p ≤ 1, et celle de F̃n pour 1/k < p ≤ 1, est presque sûrement
strictement positive et est donnée par∫ ∞

0
logx dνk,ρ(x),

où ρ est une fonction explicite de p dépendant du cas considéré, à valeurs dans [0,1], et νk,ρ est une mesure de probabilité
explicite sur R+ définie inductivement sur les intervalles de Stern–Brocot généralisés. Nous donnons aussi une formule intégrale
pour 0 < p ≤ 1 dans le cas, plus facile, où λ ≥ 2. Enfin, nous étudions les variations de l’exposant en fonction de p.
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1. Introduction

Random Fibonacci sequences have been defined by Viswanath by F1 = F2 = 1 and the random recurrence Fn+2 =
Fn+1 ± Fn, where the ± sign is given by tossing a balanced coin. In [13], he proved that

n
√|Fn| −→ 1.13198824 . . . a.s.
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and the logarithm of the limit is given by an integral expression involving a measure defined on Stern–Brocot intervals.
Rittaud [10] studied the exponential growth of E(|Fn|): it is given by an explicit algebraic number of degree 3, which
turns out to be strictly larger than the almost-sure exponential growth obtained by Viswanath. In [7], Viswanath’s
result has been generalized to the case of an unbalanced coin and to the so-called non-linear case Fn+2 = |Fn+1 ±Fn|.
Observe that this latter case reduces to the linear recurrence when the ± sign is given by tossing a balanced coin.

A further generalization consists in fixing two real numbers, λ and β , and considering the recurrence relation
Fn+2 = λFn+1 ± βFn (or Fn+2 = |λFn+1 ± βFn|), where the ± sign is chosen by tossing a balanced (or unbalanced)
coin. By considering the modified sequence Gn := Fn/β

n/2, which satisfies Gn+2 = λ√
β
Gn+1 ± Gn, we can always

reduce to the case β = 1. The purpose of this article is thus to generalize the results presented in [7] on the almost-sure
exponential growth to random Fibonacci sequences with a multiplicative coefficient: (Fn)n≥1 and (F̃n)n≥1, defined
inductively by their first two positive terms F1 = F̃1 = a, F2 = F̃2 = b and for all n ≥ 1,

Fn+2 = λFn+1 ± Fn (linear case), (1)

F̃n+2 = |λF̃n+1 ± F̃n| (non-linear case), (2)

where each ± sign is independent and either + with probability p or − with probability 1 − p (0 < p ≤ 1). We are
not yet able to solve this problem in full generality. If λ ≥ 2, the linear and non-linear cases are essentially the same,
and the study of the almost-sure growth rate can easily be handled (Theorem 1.4). The situation λ < 2 is much more
difficult. However, the method developed in [7] can be extended in a surprisingly elegant way to a countable family
of λ’s, namely when λ is of the form λk = 2 cos(π/k) for some integer k ≥ 3. The simplest case λ3 = 1 corresponds
to classical random Fibonacci sequences studied in [7]. The link made in [7] and [10] between random Fibonacci
sequences and continued fraction expansion remains valid for λk = 2 cos(π/k) and corresponds to so-called Rosen
continued fractions, a notion introduced by Rosen in [11]. These values λk are the only ones strictly smaller than
2 for which the group (called Hecke group) of transformations of the hyperbolic half plane H

2 generated by the
transformations z �−→ −1/z and z �−→ z + λ is discrete.

In the linear case, the random Fibonacci sequence is given by a product of random i.i.d. matrices, and the classical
way to investigate the exponential growth is to apply Furstenberg’s formula [3]. This is the method used by Viswanath,
and the difficulty lies in the determination of Furstenberg’s invariant measure. In the non-linear case, the involved
matrices are no more i.i.d., and the standard theory does not apply. This case enters into the class of Markovian
systems, studied in [5] with strong hypothesis which are not satisfied in our case.

The argument we use in our study is completely different from usual techniques and relies on some reduction
process which will be developed in details in the linear case. Surprisingly, our method works easier in the non-linear
case, for which we only outline the main steps.

Our main results are the following.

Theorem 1.1. Let λ = λk = 2 cos(π/k), for some integer k ≥ 3.
For any ρ ∈ [0,1], there exists an explicit probability distribution νk,ρ on R+ defined inductively on general-

ized Stern–Brocot intervals (see Section 3.2 and Fig. 1), which gives the exponential growth of random Fibonacci
sequences:

• Linear case: Fix F1 > 0 and F2 > 0. For p = 0, the sequence (|Fn|) is periodic with period k. For any p ∈]0,1],
1

n
log |Fn| −→

n→∞γp,λk
=
∫ ∞

0
logx dνk,ρ(x) > 0

almost-surely, where

ρ := k−1
√

1 − pR

and pR is the unique positive solution of(
1 − px

p + (1 − p)x

)k−1

= 1 − x.
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Fig. 1. The measure νk,ρ on generalized Stern–Brocot intervals of rank 1 and 2 in the case k = 4 (λk = √
2). The normalizing constant Z is given

by 1 + ρ + ρ2. The endpoints of the intervals are specified by their
√

2-continued fraction expansion.

• Non-linear case: For p ∈]1/k,1] and any choice of F̃1 > 0 and F̃2 > 0,

1

n
log F̃n −→

n→∞ γ̃p,λk
=
∫ ∞

0
logx dνk,ρ(x) > 0

almost-surely, where

ρ := k−1
√

1 − pR

and pR is, for p < 1, the unique positive solution of(
1 − px

(1 − p) + px

)k−1

= 1 − x.

(For p = 1, pR = 1.)

Remark 1.2. In the linear case, general results about products of i.i.d. matrices from [4] prove that a central limit

theorem holds:
log |Fn|−nγp,λk√

n
converges in law, as n goes to infinity, to a centered Gaussian law. It would be of interest

to study the existence of such a theorem in the non-linear case and compute the standard deviation in both cases.

The behavior of (F̃n) when p ≤ 1/k strongly depends on the choice of the initial values. This phenomenon was
not perceived in [7], in which the initial values were set to F̃1 = F̃2 = 1. However, we have the general result:

Theorem 1.3. Let λ = λk = 2 cos(π/k), for some integer k ≥ 3. In the non-linear case, for 0 ≤ p ≤ 1/k, there exists
almost-surely a bounded subsequence (F̃nj

) of (F̃n) with density (1 − kp).

The bounded subsequence in Theorem 1.3 satisfies F̃nj+1 = |λF̃nj
− F̃nj−1 | for any j , which corresponds to the

non-linear case for p = 0. We therefore concentrate on this case in Section 6.2 and provide necessary and sufficient
conditions for (F̃n) to be ultimately periodic (see Proposition 6.5). Moreover, we prove that F̃n may decrease expo-
nentially fast to 0, but that the exponent depends on the ratio F̃0/F̃1.

The critical value 1/k in the non-linear case is to be compared with the results obtained in the study of E[F̃n]
(see [6]): it is proved that E[F̃n] increases exponentially fast as soon as p > (2 − λk)/4.

When λ ≥ 2, the linear case and the non-linear case are essentially the same. The study of the exponential growth
of the sequence (Fn) is much simpler, and we obtain the following result.
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Theorem 1.4. Let λ ≥ 2 and 0 < p ≤ 1. For any choice of F1 > 0 and F2 > 0,

1

n
log |Fn| −→

n→∞γp,λ =
∫ ∞

0
logx dμp,λ(x) > 0 a.s.,

where μp,λ is an explicit probability measure supported on [B,λ+ 1
B

], with B := λ+
√

λ2−4
2 (see Section 7 and Fig. 3).

Road map

The detailed proof of Theorem 1.1 in the linear case is given in Sections 2–5: Section 2 explains the reduction process
on which our method relies. In Section 3, we introduce the generalized Stern–Brocot intervals in connection with
the expansion of real numbers in Rosen continued fractions, which enables us to study the reduced sequence as-
sociated to (Fn). In Section 4, we come back to the original sequence (Fn), and, using a coupling argument, we
prove that its exponential growth is given by the integral formula. Then we prove the positivity of the integral in
Section 5.

The proof for the non-linear case, p > 1/k, works with the same arguments (in fact it is even easier), and the
minor changes are given at the beginning of Section 6. The end of this section is devoted to the proof of Theo-
rem 1.3.

The proof of Theorem 1.4 (for λ ≥ 2) is given in Section 7.
In Section 8.1, we study the variations of γp,λ and γ̃p,λ with p. Conjectures concerning variations with λ are given

in Section 8.2.
Connections with Embree–Trefethen’s paper [2], who study a slight modification of our linear random Fibonacci

sequences when p = 1/2, are discussed in Section 9.

2. Reduction: The linear case

The sequence (Fn)n≥1 can be coded by a sequence (Xn)n≥3 of i.i.d. random variables taking values in the alphabet
{R,L} with probability (p,1 − p). Each R corresponds to choosing the + sign and each L corresponds to choosing
the − sign, so that both can be interpreted as the right multiplication of (Fn−1,Fn) by one of the following matrices:

L :=
(

0 −1
1 λ

)
and R :=

(
0 1
1 λ

)
. (3)

According to the context, we will interpret any finite sequence of R’s and L’s as the corresponding product of matrices.
Therefore, for all n ≥ 3,

(Fn−1,Fn) = (F1,F2)X3 · · ·Xn.

Our method relies on a reduction process of the sequence (Xn) based on some relations satisfied by the matrices R

and L. Recalling the definition of λ = 2 cos(π/k), we can write the matrix L as the product P −1DP , where

D :=
(

eiπ/k 0
0 e−iπ/k

)
, P :=

(
1 eiπ/k

1 e−iπ/k

)
and

P −1 = 1

2i sin(π/k)

(−e−iπ/k eiπ/k

1 −1

)
.

As a consequence, we get that for any integer j ,

Lj = 1

sin(π/k)

(− sin (j−1)π
k

− sin jπ
k

sin jπ
k

sin (j+1)π
k

)
, (4)



Almost-sure growth rate of generalized random Fibonacci sequences 139

and

RLj = 1

sin(π/k)

(
sin jπ

k
sin (j+1)π

k

sin (j+1)π
k

sin (j+2)π
k

)
. (5)

In particular, for j = k − 1 we get the following relations satisfied by R and L, on which is based our reduction
process:

RLk−1 =
(

1 0
0 −1

)
, RLk−1R = −L and RLk−1L = −R. (6)

Moreover, Lk = − Id.
We deduce from (6) that, in products of R’s and L’s, we can suppress all patterns RLk−1 provided we flip the next

letter. This will only affect the sign of the resulting matrix.
To formalize the reduction process, we associate to each finite sequence x = x3 · · ·xn ∈ {R,L}n−2 a (generally)

shorter word Red(x) = y3 · · ·yj by the following induction. If n = 3, y3 = x3. If n > 3, Red(x3 · · ·xn) is deduced
from Red(x3 · · ·xn−1) in two steps.

Step 1. Add one letter (R or L, see below) to the end of Red(x3 · · ·xn−1).
Step 2. If the new word ends with the suffix RLk−1, remove this suffix.
The letter which is added in step 1 depends on what happened when constructing Red(x3 · · ·xn−1):

• If Red(x3 · · ·xn−1) was simply obtained by appending one letter, we add xn to the end of Red(x3 · · ·xn−1).
• Otherwise, we had removed the suffix RLk−1 when constructing Red(x3 · · ·xn−1); we then add xn to the end of

Red(x3 · · ·xn−1), where R := L and L := R.

Example: Let x = RLRLLLRLL and k = 4. Then, the reduced sequence is given by Red(x) = R.
Observe that by construction, Red(x) never contains the pattern RLk−1. Let us introduce the reduced random

Fibonacci sequence (F r
n ) defined by(

F r
n−1,F

r
n

) := (F1,F2)Red(X3 · · ·Xn).

Note that we have Fn = ±F r
n for all n. From now on, we will therefore concentrate our study on the reduced sequence

Red(X3 · · ·Xn). We will denote its length by j (n) and its last letter by Y(n).
The proof of Lemma 2.1 in [7] can be directly adapted to prove the following lemma.

Lemma 2.1. We denote by |W |R the number of R’s in the word W . We have∣∣Red(X3 · · ·Xn)
∣∣
R

−→
n→∞+∞ a.s. (7)

In particular, the length j (n) of Red(X3 · · ·Xn) satisfies

j (n) −→
n→∞+∞ a.s.

2.1. Survival probability of an R

We say that the last letter of Red(X3 · · ·Xn) survives if, for all m ≥ n, j (m) ≥ j (n). In other words, this letter survives
if it is never removed during the subsequent steps of the reduction. By construction, the survival of the last letter Y(n)

of Red(X3 · · ·Xn) only depends on its own value and the future Xn+1,Xn+2 . . . when Y(n) = R. Let

pR := P
(
Y(n) survives |Y(n) = R has been appended at time n

)
.

A consequence of Lemma 2.1 is that pR > 0. We now want to express pR as a function of p.
Observe that Y(n) = R survives if and only if, after the subsequent steps of the reduction, it is followed by LjR

where 0 ≤ j ≤ k − 2, and the latter R survives. Recall that the probability of appending an R after a deletion of
the pattern RLk−1 is 1 − p, whereas it is equal to p if it does not follow a deletion. Assume that Y(n) = R has
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been appended at time n. We want to compute the probability for this R to survive and to be followed by LjR

(0 ≤ j ≤ k − 2) after the reduction. This happens with probability

pj := P

(
R be followed by

( �≥0
deletions︷ ︸︸ ︷
[——R . . .] L

) · · · ([——R . . .]L)︸ ︷︷ ︸
j times

[——R . . .]
survives︷︸︸︷

R

)

=
(

(1 − p) + p
∑
�≥1

(1 − pR)�(1 − p)�−1p

)j

p
∑
�≥0

(1 − pR)�(1 − p)�pR

=
(

1 − ppR

p + (1 − p)pR

)j
ppR

p + (1 − p)pR

.

Writing pR =∑k−2
j=0 pj , we get that pR is a solution of the equation

g(x) = 0, where g(x) := 1 − px

p + (1 − p)x
− (1 − x)1/(k−1). (8)

Observe that g(0) = 0, and that g is strictly convex. Therefore there exists at most one x > 0 satisfying g(x) = 0, and
it follows that pR is the unique positive solution of (8).

2.2. Distribution law of surviving letters

A consequence of Lemma 2.1 is that the sequence of surviving letters

(Sj )j≥3 = lim
n→∞ Red(X3 · · ·Xn)

is well defined and can be written as the concatenation of a certain number s ≥ 0 of starting L’s, followed by infinitely
many blocks:

S1S2 · · · = LsB1B2 · · · ,
where s ≥ 0 and, for all � ≥ 1, B� ∈ {R,RL, . . . ,RLk−2}. This block decomposition will play a central role in our
analysis.

We deduce from Section 2.1 the probability distribution of this sequence of blocks:

Lemma 2.2. The blocks (B�)�≥1 are i.i.d. with common distribution law Pρ defined as follows

Pρ

(
B1 = RLj

) := ρj∑k−2
m=0 ρm

, 0 ≤ j ≤ k − 2, (9)

where ρ := 1 − ppR

p+(1−p)pR
and pR is the unique positive solution of (8).

In [7], where the case k = 3 was studied, we used the parameter α = 1/(1 + ρ) instead of ρ.
Observe that ρ = ((1 −p)+p

∑
�≥1(1 −pR)�(1 −p)�−1p) can be interpreted as the probability that the sequence

of surviving letters starts with an L. Since an R does not survive if it is followed by k − 1 L’s, this explains why the
probability 1 − pR that an R does not survive is equal to ρk−1.

Proof of Lemma 2.2. Observe that the event En := “Y(n) = R has been appended at time n and survives” is the
intersection of the two events “Y(n) = R has been appended at time n,” which is measurable with respect to σ(Xi, i ≤
n), and “(Xi)i>n generates the survival of an R appended at time n,” which is measurable with respect to σ(Xi, i > n).
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It follows that, conditioned on En, σ(Xi, i ≤ n) and σ(Xi, i > n) remain independent. Thus the blocks in the
sequence of surviving letters appear independently, and their distribution is given by

Pρ

(
B1 = RLj

)= pj

pR

= ρj∑k−2
m=0 ρm

, 0 ≤ j ≤ k − 2.
�

3. Rosen continued fractions and generalized Stern–Brocot intervals

3.1. The quotient Markov chain

For � ≥ 1, let us denote by n� the time when the �th surviving R is appended, and set

Q� := F r
n�+1−1

F r
n�+1−2

, � ≥ 0.

Q� is the quotient of the last two terms once the �th definitive block of the reduced sequence has been written. Observe
that the right-product action of blocks B ∈ {R,RL, . . . ,RLk−2} acts on the quotient F r

n/F r
n−1 in the following way:

For 0 ≤ j ≤ k − 2, for any (a, b) ∈ R
∗ × R, if we set (a′, b′) := (a, b)RLj , then

b′

a′ = f j ◦ f0

(
b

a

)
,

where f0(q) := λ + 1/q and f (q) := λ − 1/q . For short, we will denote by fj the function f j ◦ f0. Observe that fj

is an homographic function associated to the matrix RLj in the following way: To the matrix
(

α β
γ δ

)
corresponds the

homographic function q �→ β+δq
α+γ q

.
It follows from Lemma 2.2 that (Q�)�≥1 is a real-valued Markov chain with probability transitions

P
(
Q�+1 = fj (q)|Q� = q

)= ρj∑k−2
m=0 ρm

, 0 ≤ j ≤ k − 2.

3.2. Generalized Stern–Brocot intervals and the measure νk,ρ

Let us define subintervals of R: for 0 ≤ j ≤ k − 2, set Ij := fj ([0,+∞]). These intervals are of the form

Ij = [bj+1, bj ], where b0 = +∞, b1 = λ = f0(+∞) = f1(0), bj+1 = f (bj ) = fj (+∞) = fj+1(0).

Observe that bk−1 = fk−1(0) = 0 since RLk−1 =
(

1 0
0 −1

)
. Therefore, (Ij )0≤j≤k−2 is a subdivision of [0,+∞].

More generally, we set

Ij1,j2,...,j�
:= fj1 ◦ fj2 ◦ · · · ◦ fj�

([0,+∞]) ∀(j1, j2, . . . , j�) ∈ {0, . . . , k − 2}�.
For any � ≥ 1, this gives a subdivision I(�) of [0,+∞] since

Ij1,j2,...,j�−1 =
k−2⋃
j�=0

Ij1,j2,...,j�
.

When k = 3 (λ = 1), this procedure provides subdivisions of [0,+∞] into Stern–Brocot intervals.

Lemma 3.1. The σ -algebra generated by I (�) increases to the Borel σ -algebra on R+.
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We postpone the proof of this lemma to the next section.

Observe that for any q ∈ R+, P(Q� ∈ Ij1,j2,...,j�
|Q0 = q) = ρj1+···+j�

(
∑k−2

0 ρm)�
. Therefore, the probability measure νk,ρ on

R+ defined by

νk,ρ(Ij1,j2,...,j�
) := ρj1+···+j�

(
∑k−2

0 ρm)�

is invariant for the Markov chain (Q�). The fact that νk,ρ is the unique invariant probability for this Markov chain
comes from the following lemma.

Lemma 3.2. There exists almost surely L+ ≥ 0 such that for all � ≥ L+, Q� > 0.

Proof. For any q ∈ R \ {0}, either f0(q) > 0, or f1(q) = λ − 1/f0(q) > 0. Hence, for any � ≥ 0,

P(Q�+1 > 0|Q� = q) ≥ ρ∑k−2
0 ρm

.

It follows that P(∀� ≥ 0, Q� < 0) = 0, and since Q� > 0 
⇒ Q�+1 > 0, the lemma is proved. �

To a given finite sequence of blocks (RLj�), . . . , (RLj1), we associate the generalized Stern–Brocot interval
Ij1,j2,...,j�

. If we extend the sequence of blocks leftwards, we get smaller and smaller intervals. Adding infinitely
many blocks, we get in the limit a single point corresponding to the intersection of the intervals, which follows the
law νk,ρ .

3.3. Link with Rosen continued fractions

Recall (see [11]) that, since 1 ≤ λ < 2, any real number q can be written as

q = a0λ + 1

a1λ + 1

. . . + 1

anλ+. . .

,

where (an)n≥0 is a finite or infinite sequence, with an ∈ Z \ {0} for n ≥ 1. This expression will be denoted by
[a0, . . . , an, . . .]λ. It is called a λ-Rosen continued fraction expansion of q , and is not unique in general. When λ = 1
(i.e. for k = 3), we recover generalized continued fraction expansion in which partial quotients are positive or negative
integers.

Observe that the function fj are easily expressed in terms of Rosen continued fraction expansion. The Rosen con-
tinued fraction expansion of fj (q) is the concatenation of (j + 1) alternated ±1 with the expansion of ±q according
to the parity of j :

fj ([a0, . . . , an, . . .]λ) =

⎧⎪⎪⎨⎪⎪⎩
[1,−1,1, . . . ,1︸ ︷︷ ︸

(j+1) terms

, a0, . . . , an, . . .]λ if j is even,

[1,−1,1, . . . ,−1︸ ︷︷ ︸
(j+1) terms

,−a0, . . . ,−an, . . .]λ if j is odd. (10)

For any � ≥ 1, let E (�) be the set of endpoints of the subdivision I (�). The finite elements of E (1) can be written
as

bj = fj (0) = [1,−1,1, . . . ,±1︸ ︷︷ ︸
j terms

]λ ∀1 ≤ j ≤ k − 1.
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In particular for j = k − 1 we get a finite expansion of bk−1 = 0. Moreover, by (10),

b0 = f0(0) = ∞ = [1,1,−1,1, . . . ,±1︸ ︷︷ ︸
k−1 terms

]λ.

Iterating (10), we see that for all � ≥ 1, the elements of E (�) can be written as a finite λ-Rosen continued fraction
with coefficients in {−1,1}.

Proposition 3.3. The set
⋃

�≥1 E� of all endpoints of generalized Stern–Brocot intervals is the set of all non-negative
real numbers admitting a finite λ-Rosen continued fraction expansion.

The proof uses the two following lemmas.

Lemma 3.4.

fj (x) = 1

fk−2−j (1/x)
∀0 ≤ j ≤ k − 2.

Proof. From (5), we get

RLk−2 =
(

λ 1
1 0

)
, hence fk−2(x) = 1

λ + x
.

Therefore, fk−2(1/x) = 1/f0(x) and the statement is true for j = 0. Assume now that the result is true for j ≥ 0. We
have

fj+1(x) = λ − 1

fj (x)
= λ − fk−2−j

(
1

x

)
= λ − f ◦ fk−3−j

(
1

x

)
= 1

fk−3−j (1/x)
,

so the result is proved by induction. �

Lemma 3.5. For any � ≥ 1, the set E (�) of endpoints of the subdivision I (�) is invariant by x �→ 1/x. Moreover, the
largest finite element of E (�) is �λ and the smallest positive one is 1/�λ.

Proof. Recall that the elements of E (1) are of the form bj = fj−1(∞) = fj (0), and the largest finite endpoint is
b1 = λ. Hence, the result for � = 1 is a direct consequence of Lemma 3.4.

Assume now that the result is true for � ≥ 1. Consider b ∈ E (�+1)\E (�). There exists 0 ≤ j ≤ k−2 and b′ ∈ E (�)

such that b = fj (b
′). Since 1/b′ is also in E (�), we see from Lemma 3.4 that 1/b = fk−2−j (1/b′) ∈ E (� + 1).

Hence E (� + 1) is invariant by x �→ 1/x. Now, since f0 is decreasing, the largest finite endpoint of E (� + 1) is
f0(1/�λ) = (� + 1)λ, and the smallest positive endpoint of I (� + 1) is 1/(� + 1)λ. �

Proof of Proposition 3.3. The set of non-negative real numbers admitting a finite λ-Rosen continued fraction expan-
sion is the smallest subset of R+ containing 0 which is invariant under x �→ 1/x and x �→ x + λ. By Lemma 3.5, the
set
⋃

�≥1 E� is invariant under x �→ 1/x. Moreover, it is also invariant by x �→ fk−2(x) = 1/(x + λ), and contains
bk−1 = 0. �

Remark 3.6. The preceding proposition generalizes the well-known fact that the endpoints of Stern–Brocot intervals
are the rational numbers, that is real numbers admitting a finite continued fraction expansion.

Proof of Lemma 3.1. This is a direct consequence of Proposition 3.3 and the fact that the set of numbers admitting a
finite λ-Rosen continued fraction expansion is dense in R for any λ < 2 (see [11]). �



144 É. Janvresse, B. Rittaud and T. de la Rue

4. Coupling with a two-sided stationary process

If |Fn+1/Fn| was a stationary sequence with distribution νk,ρ , then a direct application of the ergodic theorem would
give the convergence stated in Theorem 1.1. The purpose of this section is to prove via a coupling argument that
everything goes as if it was the case. For this, we embed the sequence (Xn)n≥3 in a doubly-infinite i.i.d. sequence
(X∗

n)n∈Z with Xn = X∗
n for all n ≥ 3. We define the reduction of (X∗)−∞<j≤n, which gives a left-infinite sequence

of i.i.d. blocks, and denote by q∗
n the corresponding limit point, which follows the law νk,ρ . We will see that for

n large enough, the last � blocks of Red(X3 · · ·Xn) and Red((X∗)−∞<j≤n) are the same. Therefore, the quotient
qn := F r

n/F r
n−1 is well-approximated by q∗

n , and an application of the ergodic theorem to q∗
n will give the announced

result.

4.1. Reduction of a left-infinite sequence

We will define the reduction of a left-infinite i.i.d. sequence (X∗)0−∞ by considering the successive reduced sequence
Red(X∗−n · · ·X∗

0).

Proposition 4.1. For all � ≥ 1, there exists almost surely N(�) such that the last � blocks of Red(X∗−n · · ·X∗
0) are the

same for any n ≥ N(�).

This allows us to define almost surely the reduction of a left-infinite i.i.d. sequence (X∗)0−∞ as the left-infinite
sequence of blocks obtained in the limit of Red(X∗−n · · ·X∗

0) as n → ∞.
Let us call excursion any finite sequence w1 · · ·wm of R’s and L’s such that Red(w1 · · ·wm) = ∅. We say that a

sequence is proper if its reduction process does not end with a deletion. This means that the next letter is not flipped
during the reduction.

The proof of the proposition will be derived from the following lemmas.

Lemma 4.2. If there exists n > 0 such that X∗−n · · ·X∗−1 is not proper, then X∗
0 is preceded by a unique excursion.

Proof. We first prove that an excursion can never be a suffix of a strictly larger excursion. Let W = W1RW ′ be
an excursion, with RW ′ another excursion. Then, interpreting the sequences of letters as matrices, we get WL =
W1RW ′L = ±R and RW ′L = ±R, which implies that the matrix associated to W1 is ± Id. It follows that the matrix

associated to Red(W1) is
(±1 0

0 ±1

)
. Observe that Red(W1) cannot start with L’s since Red(W1RW ′) = ∅. Therefore,

it is a concatenation of s blocks, corresponding to some function fj1 ◦ · · · ◦fjs which cannot be x �→ ±x unless s = 0.
But s = 0 means that Red(W1) = ∅, so Red(W) = Red(LW ′) = ∅, which is impossible.

Observe first that, if X∗
0 is not flipped during the reduction of X∗

−(n−1) · · ·X∗
0 but is flipped during the reduction of

X∗−n · · ·X∗
0 , then X∗−n is an R which is removed during the reduction process of X∗−n · · ·X∗

0 . In particular, this is true
if we choose n to be the smallest integer such that X∗

0 is flipped during the reduction of X∗−n · · ·X∗
0 . Therefore there

exists 0 ≤ j < n such that X∗−n · · ·X∗
−(j+1) is an excursion. If j = 0 we are done; otherwise the same observation

proves that X∗−j is an L which is flipped during the reduction process of X∗−n · · ·X∗−j . Therefore, X∗
0 is flipped during

the reduction of RX∗
−(j−1) · · ·X∗

0 , but not during the reduction of X∗−� · · ·X∗
0 for any � ≤ j − 1. Iterating the same

argument finitely many times proves that Red(X∗−n · · ·X∗−1) = ∅. �

Lemma 4.3.∑
w excursions

P(w) < 1.

Proof. X0 is an R which does not survive during the reduction process if and only if it is the beginning of an excursion.
By considering the longest such excursion, we get

p(1 − pR) =
∑

w excursions

P(w)
[
(1 − p)pR + p

]
.
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Hence, ∑
w excursions

P(w) = p(1 − pR)

(1 − p)pR + p
< 1. (11)

�

We deduce from the two preceding lemmas:

Corollary 4.4. There is a positive probability that for all n > 0 the sequence X∗−n · · ·X∗−1 be proper.

Proof of Proposition 4.1. We deduce from Corollary 4.4 that with probability 1 there exist infinitely many j ’s such
that

• X∗−j is an R which survives in the reduction of X∗−j · · ·X∗
0 ;

• X∗−n · · ·X∗−j−1 is proper for all n ≥ j .

For such j , the contribution of X∗−j · · ·X∗
0 to Red(X∗−n · · ·X∗

0) is the same for any n ≥ j . �

The same argument allows us to define almost surely Red((X∗)n−∞) for all n ∈ Z, which is a left-infinite sequence
of blocks. Observe that we can associate to each letter of this sequence of blocks the time t ≤ n at which it was
appended. We number the blocks by defining Bn

0 as the rightmost block whose initial R was appended at some time
t < 0. For n > 0, we have Red((X∗)n−∞) = · · ·Bn

−1B
n
0 Bn

1 · · ·Bn
L(n) where 0 ≤ L(n) ≤ n. The random number L(n)

evolves in the same way as the number of R′s in Red(X3 · · ·Xn). By Lemma 2.1, L(n) → +∞ as n → ∞ almost
surely. As a consequence, for any j ∈ Z the block Bn

j is well-defined and constant for all large enough n. We denote by

Bj the limit of Bn
j . The concatenation of these blocks can be viewed as the reduction of the whole sequence (X∗)+∞−∞.

The same arguments as those given in Section 2 prove that the blocks Bj are i.i.d. with common distribution law Pρ .
It is remarkable that the same result holds if we consider only the blocks in the reduction of (X∗)0−∞.

Proposition 4.5. The sequence Red((X∗)0−∞) is a left-infinite concatenation of i.i.d. blocks with common distribution
law Pρ .

Proof. Observe that Red((X∗)0−∞) = Red((X∗)L−∞) where L ≤ 0 is the (random) index of the last letter not removed
in the reduction process of (X∗)0−∞. For any � ≤ 0, we have L = � if and only if (X∗)�−∞ is proper and (X∗)0

�+1 is an
excursion. For any bounded measurable function f , since E[f (Red((X∗)�−∞)) | (X∗)�−∞ is proper] does not depend
on �, we have

E
[
f
(
Red
((

X∗)0
−∞
))] =

∑
�

P(L = �)E
[
f
(
Red
((

X∗)�
−∞
)) ∣∣ L = �

]
=
∑

�

P(L = �)E
[
f
(
Red
((

X∗)�
−∞
)) ∣∣ (X∗)�

−∞ is proper,
(
X∗)0

�+1 is an excursion
]

=
∑

�

P(L = �)E
[
f
(
Red
((

X∗)�
−∞
)) ∣∣ (X∗)�

−∞ is proper
]

= E
[
f
(
Red
((

X∗)0
−∞
)) ∣∣ (X∗)0

−∞ is proper
]
.

This also implies that the law of Red((X∗)0−∞) is neither changed when conditioned on the fact that (X∗)0−∞ is not
proper.

Assume that (X∗)0−∞ is proper. The fact that the blocks of Red((X∗)0−∞) will not be subsequently modified in the
reduction process of (X∗)∞−∞ only depends on (X∗)∞1 . Therefore, E[f (Red((X∗)0−∞))|(X∗)0−∞ is proper] is equal to

E
[
f
(
Red
((

X∗)0
−∞
)) ∣∣ (X∗)0

−∞ is proper and blocks of Red
((

X∗)0
−∞
)

are definitive
]
.
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The same equality holds if we replace “proper” with “not proper.” Hence, the law of Red((X∗)0−∞) is the same as the
law of Red((X∗)0−∞) conditioned on the fact that blocks of Red((X∗)0−∞) are definitive. But we know that definitive
blocks are i.i.d. with common distribution law Pρ . �

4.2. Quotient associated to a left-infinite sequence

Let n be a fixed integer. For m ≥ 0, we decompose Red((X∗)n−m<i≤n) into blocks B�, . . . ,B1 = (RLj�), . . . , (RLj1),
to which we associate the generalized Stern–Brocot interval Ij1,j2,...,j�

. If we let m go to infinity, the preceding section
shows that this sequence of intervals converges almost surely to a point q∗

n . By Proposition 4.5, q∗
n follows the law

νk,ρ .
Since (q∗

n) is an ergodic stationary process, and log(·) is in L1(νk,ρ), the ergodic theorem implies

1

N

N∑
n=1

logq∗
n −→

N→∞

∫
R+

logq dνk,ρ(q) almost surely. (12)

The last step in the proof of the main theorem is to compare the quotient qn = F r
n/F r

n−1 with q∗
n .

Proposition 4.6.

1

N

N∑
n=3

∣∣ logq∗
n − log |qn|

∣∣ −→
N→∞ 0 almost surely.

We call extremal the leftmost and rightmost intervals of I (�).

Lemma 4.7.

s� := sup
I∈I (�)

Inot extremal

sup
q,q∗∈I

∣∣ logq∗ − logq
∣∣ −→
�→∞ 0

Proof. Fix ε > 0, and choose an integer M > 1/ε. By Lemma 3.1, since log(·) is uniformly continuous on
[1/Mλ,Mλ], we have for � large enough

sup
I∈I (�)

I⊂[1/Mλ,Mλ]

sup
q,q∗∈I

∣∣ logq∗ − logq
∣∣≤ ε.

If I ∈ I (�) is a non-extremal interval included in [0,1/Mλ] or in [Mλ,+∞], there exists an integer j ∈ [M,�] such
that I ⊂ [1/(j + 1)λ,1/jλ] or I ⊂ [jλ, (j + 1)λ]. Hence,

sup
q,q∗∈I

∣∣ logq∗ − logq
∣∣≤ log

(
j + 1

j

)
≤ log

(
1 + 1

M

)
≤ ε. �

Proof of Proposition 4.6. For any j ∈ Z, we define the following event Ej :

• X∗
j is an R which survives in the reduction of (X∗

i )i≥j ;
• X∗

i · · ·X∗
j−1 is proper for all i < j .

Observe that if Ej holds for some j ≥ 3, then for all n ≥ j ,

Red(X3 · · ·Xn) = Red(X3 · · ·Xj−1)Red(Xj · · ·Xn) and

Red
((

X∗)n
−∞
)= Red

((
X∗)j−1

−∞
)

Red
(
X∗

j · · ·X∗
n

)
.
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Hence, since Xj · · ·Xn = X∗
j · · ·X∗

n, they give rise in both reductions to the same blocks, the first one being definitive.
Since each Ej holds with the same positive probability, the ergodic theorem yields

1

n

n∑
j=3

1Ej
−→
n→∞ P(E3) > 0 almost surely, (13)

hence the number of definitive blocks of Red(X3 · · ·Xn) and of Red((X∗)n−∞) which coincide grows almost surely
linearly with n as n goes to ∞ (these definitive blocks may be followed by some additional blocks which also coin-
cide).

Recall the definition of L+ given in Lemma 3.2 and observe that for n ≥ nL+ , qn > 0. Observe also that, by
definition of Ij1,j2,...,j�

, if q and q∗ are two positive real numbers, fj1 ◦ fj2 ◦ · · · ◦ fj�
(q) and fj1 ◦ fj2 ◦ · · · ◦ fj�

(q∗)
belong to the same interval of I (�).

From (13), we deduce that, almost surely, for n large enough, at least L+ +√
n definitive blocks of Red(X3 · · ·Xn)

and of Red((X∗)n−∞) coincide (possibly followed by some additional blocks which also coincide). This ensures that
qn and q∗

n belong to the same interval of the subdivision I (
√

n).
By Lemma 4.7, it remains to check that, almost surely, there exist only finitely many n’s such that q∗

n belongs to an
extremal interval of the subdivision I (

√
n). But this is a direct application of Borel–Cantelli lemma, observing that

the measure νk,ρ of an extremal interval of I (�) decreases exponentially fast with �. �

We now conclude the section by the proof of the convergence to the integral given in Theorem 1.1, linear case:
Since Fn = ±F r

n , we can write n−1 log |Fn| as

1

n
log |F2| + 1

n

n∑
j=3

logq∗
j + 1

n

n∑
j=3

(
log |qj | − logq∗

j

)
,

and the convergence follows using Proposition 4.6 and (12).

5. Positivity of the integral

We now turn to the proof of the positivity of γp,λk
. It relies on the following lemma, whose proof is postponed.

Lemma 5.1. Fix 0 < ρ < 1. For any t > 0,

Δt := νk,ρ

([t,∞)
)− νk,ρ

([0,1/t])≥ 0. (14)

Moreover, there exists t > 1 such that the above inequality is strict.

Using Fubini’s theorem, we obtain that γp,λk
is equal to∫ ∞

0
logx dνk,ρ(x) =

∫ ∞

1
logx dνk,ρ(x) −

∫ 1

0
log(1/x)dνk,ρ(x)

=
∫ ∞

0
νk,ρ

([
eu,∞))du −

∫ ∞

0
νk,ρ

([
0, e−u

])
du

which is positive if 0 < ρ < 1 by Lemma 5.1. Thus, γp,λk
> 0 for any p > 0. This ends the proof of Theorem 1.1,

linear case.

Proof of Lemma 5.1. By Lemma 3.1, it is enough to prove the lemma when t is the endpoint of an interval of the
subdivision I (�). This is done by induction on �. Obviously, Δ0 = Δ∞ = 0. When � = 1 and � = 2, if t �= 0,∞, it
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can be written as fj (bi) for 0 ≤ j ≤ k − 2 and 0 ≤ i ≤ k − 2, and we get 1/t = fk−2−j (bk−1−i ) (see Lemma 3.4).
Setting Z :=∑k−2

s=0 ρs , we have

νk,ρ

([t,∞)
)= j−1∑

s=0

νk,ρ

([bs+1, bs)
)+ νk,ρ

([t, bj )
)= j−1∑

s=0

ρs

Z
+ ρj

Z
νk,ρ

([0, bi]
)= j−1∑

s=0

ρs

Z
+ ρj

Z

k−2∑
s=i

ρs

Z
.

Therefore,

νk,ρ

([t,∞)
)− νk,ρ

([0,1/t]) =
j−1∑
s=0

ρs

Z
+ ρj

Z

k−2∑
s=i

ρs

Z
−
(

k−2∑
s=k−1−j

ρs

Z
+ ρk−2−j

Z

k−2−i∑
s=0

ρs

Z

)

=
j−1∑
s=0

ρs

Z

(
1 − ρk−1−j

)+ 1

Z

(
ρi+j − ρk−2−j

) k−2−i∑
s=0

ρs

Z
.

Since i ≤ k − 2, we have ρi+j − ρk−2−j ≥ ρk−2−j (ρ2j − 1). Moreover,
∑k−2−i

s=0
ρs

Z
≤ 1. Thus,

ZΔt ≥
j−1∑
s=0

ρs
(
1 − ρk−1−j

)− ρk−2−j
(
1 − ρ2j

)
.

Observe that (1 − ρk−1−j ) = (1 − ρ)
∑k−2−j

s=0 ρs and that 1 − ρ2j = (1 + ρj )(1 − ρ)
∑j−1

s=0 ρs . Hence,

ZΔt ≥ (1 − ρ)

j−1∑
s=0

ρs

(
k−2−j∑

s=0

ρs − ρk−2−j
(
1 + ρj

))
,

which is positive as soon as j < k − 2. The quantity Δt is invariant when t is replaced by 1/t , so we also get the
desired result for j = k − 2.

Assume (14) is true for any endpoint of intervals of the subdivision I (j), j ≤ � − 1. Let t be an endpoint of an
interval of I (�); then there exists an interval [t1, t2] of I (� − 2) such that t ∈ [t1, t2]. We can write

νk,ρ

([t,∞)
)= νk,ρ

([t2,∞)
)+ νk,ρ

([t1, t2])νk,ρ

([u,∞)
)

and

νk,ρ

([0,1/t])= νk,ρ

([0,1/t2]
)+ νk,ρ

([1/t2,1/t1]
)
νk,ρ

([0,1/u])
for some endpoint u of an interval of I (2). If νk,ρ([t1, t2]) ≥ νk,ρ([1/t2,1/t1]), we get the result since (14) holds for
u, and t2. Otherwise, we can write Δt as

Δt1 − νk,ρ

([t1, t2])+ νk,ρ

([1/t2,1/t1]
)+ νk,ρ

([t1, t2])νk,ρ

([u,∞)
)− νk,ρ

([1/t2,1/t1]
)
νk,ρ

([0,1/u])
which is greater than

Δt1 + νk,ρ

([1/t2,1/t1]
)
Δu ≥ 0. �

Remark 5.2. We can also define the probability measure νk,ρ for ρ = 1. (When k = 3, this is related to Minkowski’s
Question Mark Function, see [1].) It is straightforward to check that νk,1([t,∞)) − νk,1([0,1/t]) = 0 for all t > 0,
which yields∫ ∞

0
logx dνk,1(x) = 0.
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6. Reduction: The non-linear case

In the non-linear case, where F̃n+2 = |λF̃n+1 ± F̃n|, the sequence (F̃n)n≥1 can also be coded by the sequence (Xn)n≥3
of i.i.d. random variables taking values in the alphabet {R,L} with probability (p,1 − p). Each R corresponds to
choosing the + sign and can be interpreted as the right multiplication of (F̃n−1, F̃n) by the matrix R defined in (3).
Each L corresponds to choosing the − sign but the interpretation in terms of matrices is slighty different, since we
have to take into account the absolute value: Xn+1 = L corresponds either to the right multiplication of (F̃n−1, F̃n) by
L if (F̃n−1, F̃n)L has non-negative entries, or to the multiplication by

L′ :=
(

0 1
1 −λ

)
. (15)

Observe that for all 0 ≤ j ≤ k − 2, the matrix RLj has non-negative entries (see (5)), whereas RLk−1 =
(

1 0
0 −1

)
.

Therefore, if Xi = R is followed by some L’s, we interpret the first (k−2) L’s as the right multiplication by the matrix
L, whereas the (k − 1)th L corresponds to the multiplication by L′. Moreover, RLk−2L′ = Id, so we can remove all
patterns RLk−1 in the process (Xn).

We thus associate to x3 · · ·xn the word R̃ed(x3 · · ·xn), which is obtained by the same reduction as Red(x3 · · ·xn),
except that the letter added in Step 1 is always xi . We have

(F̃n−1, F̃n) = (F̃1, F̃2)R̃ed(x3 · · ·xn).

Since the reduction process is even easier in the non-linear case, we will not give all the details but only insist
on the differences with the linear case. The first difference is that the survival probability of an R is positive only if
p > 1/k.

Lemma 6.1. For p > 1/k, the number of R’s in R̃ed(X3 · · ·Xn) satisfies∣∣R̃ed(X3 · · ·Xn)
∣∣
R

−→
n→∞+∞ a.s.

and the survival probability pR is for p < 1 the unique solution in ]0,1] of

g̃(x) = 0, where g̃(x) := (1 − x)

(
1 + p

1 − p
x

)k−1

− 1. (16)

If p ≤ 1/k, pR = 0.

Proof. Since each deletion of an R goes with the deletion of (k −1) L’s, if p > 1/k, the law of large numbers ensures
that the number of remaining R’s goes to infinity. If p < 1/k, there only remains L’s, so pR = 0.

Doing the same computations as in Section 2.1, we obtain that, for all 0 ≤ j ≤ k − 2, the probability pj for an R

to be followed by LjR after the subsequent steps of the reduction is

pj = (1 − p)jppR

(1 − p + ppR)j+1
.

Since pR =∑k−2
j=0 pj , we get that pR is solution of g̃(x) = 0. Observe that g̃(0) = 0, g̃(1) = −1, g̃′(0) > 0 for

p > 1/k and g̃′ vanishes at most once on R+. Hence, for p > 1/k, pR is the unique solution of g̃(x) = 0 in ]0,1].
For p = 1/k, g̃′(0) = 0 and the unique non-negative solution is pR = 0. �

6.1. Case p > 1/k

As in the linear case, the sequence of surviving letters

(Sj )j≥3 = lim
n→∞ R̃ed(X3 · · ·Xn)
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is well defined for p > 1/k, and can be written as the concatenation of a certain number s ≥ 0 of starting L’s and of
blocks:

S1S2 · · · = LsB1B2 · · · ,
where for all � ≥ 1, B� ∈ {R,RL, . . . ,RLk−2}. These blocks appear with the same distribution Pρ as in the linear
case, but with a different parameter ρ.

Lemma 6.2. In the non-linear case, for p > 1/k, the blocks (B�)�≥1 are i.i.d. with common distribution law Pρ

defined by (9), where ρ := k−1
√

1 − pR and pR is given by Lemma 6.1.

As in Section 4.1, we can embed the sequence (Xn)n≥3 in a doubly-infinite i.i.d. sequence (X∗
n)n∈Z with Xn = X∗

n

for all n ≥ 3. We define the reduction of (X∗)−∞<j≤n by considering the successive R̃ed(Xn−N · · ·Xn). The analog
of Proposition 4.1 is easier to prove than in the linear case since the deletion of a pattern RLk−1 does not affect the
next letter. The end of the proof is similar.

6.2. Case p ≤ 1/k

Since in this case the survival probability of an R is pR = 0, the reduced sequence R̃ed(X∞
0 ) contains only L’s.

We consider the subsequence (F̃nj
) where nj is the time when the j th L is appended to the reduced sequence. This

subsequence satisfies, for any j , F̃nj+1 = |λF̃nj
− F̃nj−1 |, which corresponds to the non-linear case for p = 0.

Therefore, we first concentrate on the deterministic sequence F̃n+1 = |λF̃n − F̃n−1|, with given non-negative initial
values F̃0 and F̃1.

Proposition 6.3. For any choice of F̃0 ≥ 0 and F̃1 ≥ 0, the sequence defined inductively by F̃n+1 = |λF̃n − F̃n−1| is
bounded.

Lemma 8.5 in the next section gives a proof of this proposition for the specific case λ = 2 cosπ/k. We give here
another proof based on a geometrical interpretation, which can be applied for any 0 < λ < 2.

The key argument relies on the following observation: Let θ be such that λ = 2 cos θ . Fix two points P0,P1 on a
circle centered at the origin O , such that the oriented angle (OP0,OP1) equals θ . Let P2 be the image of P1 by the
rotation of angle θ and center O . Then the respective abscissae x0, x1 and x2 of P0, P1 and P2 satisfy x2 = λx1 − x0.
We can then geometrically interpret the sequence (F̃n) as the successive abscissae of points in the plane.

Lemma 6.4 (Existence of the circle). Let θ ∈]0,π[. For any choice of (x, x′) ∈ R
2+ \ {(0,0)}, there exist a unique

R > 0 and two points M and M ′, with respective abscissae x and x′, lying on the circle with radius R centered at the
origin, such that the oriented angle (OM,OM ′) equals θ .

Proof. Assume that x > 0. We have to show the existence of a unique R and a unique t ∈] − π/2,π/2[ (which
represents the argument of M) such that

R cos t = x and R cos(t + θ) = x′.

This is equivalent to

R cos t = x and cos θ − tan t sin θ = x′

x
,

which obviously has a unique solution since sin θ �= 0. Moreover, observe that if x′ > 0, we have t + θ < π/2.
If x = 0, the unique solution is clearly R = x′/ cos(θ − π/2) and t = −π/2. �

Proof of Proposition 6.3. At step n, we interpret F̃n+1 in the following way: Applying the lemma with x = F̃n−1
and x′ = F̃n, we find a circle of radius Rn > 0 centered at the origin and two points M and M ′ on this circle with
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Fig. 2. Rn = Rn+1 is the radius of the largest circle, and Rn+2 is the radius of the smallest.

abscissae x and x′. Consider the image of M ′ by the rotation of angle θ and center O . If its abscissa is non-negative,
it is equal to F̃n+1, and we will have Rn+1 = Rn. Otherwise, we have to apply also the symmetry with respect to the
origin to get a point with abscissa F̃n+1. The circle at step n + 1 may then have a different radius, but we now show
that the radius always decreases (see Fig. 2).

Indeed, denoting by α the argument of M ′, we have in the latter case π/2 − θ < α ≤ π/2, F̃n = Rn cosα and
F̃n+1 = Rn cos(α + θ + π) > 0. At step n + 1, we apply the lemma with x = Rn cosα and x′ = Rn cos(α + θ + π).
From the proof of the lemma, if F̃n = 0 (i.e. if α = π/2), Rn+1 = Rn cos(α + θ + π)/ cos(θ − π/2) = Rn. If F̃n > 0,
we have Rn+1 = Rn cosα/ cos t , where t is given by

cos θ − tan t sin θ = cos(α + θ + π)

cosα
= −(cos θ − tanα sin θ).

We deduce from the preceding formula that tan t + tanα = 2 cos θ/ sin θ > 0, which implies t > −α. On the other
hand, as noticed at the end of the proof of the preceding lemma, t + θ < π/2, hence t < α. Therefore, cosα < cos t

and Rn+1 < Rn.
Since F̃n ≤ Rn ≤ R1 for all n, the proposition is proved. �

We come back to the specific case λ = 2 cosπ/k.

Proposition 6.5. Let (F̃n) be inductively defined by F̃n+1 = |λF̃n−F̃n−1| and its two first positive terms. The following
properties are equivalent:

(1) F̃0/F̃1 admits a finite λ-continued fraction expansion.
(2) The sequence (F̃n) is ultimately periodic.
(3) There exists n such that F̃n = 0.

Proof. We easily see from the proof of Proposition 6.3 that (2) and (3) are equivalent. We now prove that (3) implies
(1) by induction on the smallest n such that F̃n = 0. If F̃2 = 0, then |λF̃1 − F̃0| = 0, and we get F̃0/F̃1 = λ. Let n > 2
be the smallest n such that F̃n = 0. By the induction hypothesis, F̃1/F̃2 admits a finite λ-continued fraction expansion.
Therefore,

F̃0

F̃1
= λ ± 1

F̃1/F̃2
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admits a finite λ-continued fraction expansion.
It remains to prove that (1) implies (3). We know from Proposition 3.3 that all positive real numbers that admit

a finite λ-continued fraction expansion are endpoints of generalized Stern–Brocot intervals, hence by (10), can be
written as [1, a1, . . . , aj ]λ with ai = ±1 for any i and such that we never see more than (k − 1) alternated ±1 in a
row. We call such an expansion a standard expansion. Conversely, all real numbers that admit a standard expansion
are endpoints of generalized Stern–Brocot intervals, hence are non-negative. Assume (1) is true. If F̃0/F̃1 = [1]λ, then
F̃2 = 0. Otherwise, let [1, a1, . . . , aj ]λ be a standard expansion of F̃0/F̃1. Then,

F̃1

F̃2
= 1

|λ − F̃0/F̃1|
= ∣∣[a1, . . . , aj ]λ

∣∣.
If a1 = 1, then [a1, . . . , aj ]λ ≥ 0 and it is equal to F̃1/F̃2. Otherwise, F̃1/F̃2 = [−a1,−a2, . . . ,−aj ]λ. In both cases,
we obtain a standard expansion of F̃1/F̃2 of smaller size. The result is proved by induction on j . �

Remark 6.6. In general, if F̃0/F̃1 does not admit a finite λ-continued fraction expansion, (F̃n) decreases exponentially
fast to 0. However, the exponent depends on the ratio F̃0/F̃1.

We exhibit two examples of such behavior.
Let q := (λ+√

λ2 + 4)/2 be the fixed point of f0. Start with F̃0/F̃1 = q . Then, by a straightforward induction, we
get that for all n ≥ 0, F̃n = q−nF̃0.

Start now with F̃0/F̃1 = q ′, where q ′ is the fixed point of f1. Then, we easily get that for all n ≥ 0, F̃2n =
(q ′f0(q

′))−nF̃0 and F̃2n+1 = F̃2n/q
′. The exponent is thus 1/

√
q ′f0(q ′), which is different from 1/q: For k = 3,

q = φ (the golden ratio) and
√

q ′f0(q ′) = √
φ.

Proof of Theorem 1.3. We have seen that the subsequence (F̃nj
), where nj is the time when the j th L is appended to

the reduced sequence, satisfies, F̃nj+1 = |λF̃nj
− F̃nj−1 | for any j . From Proposition 6.3, this subsequence is bounded.

Moreover, we can write nj = j + kdj , where dj is the number of R’s up to time nj . By the law of large numbers,
dj /nj → p, and we get j/nj → 1 − kp. This achieves the proof of Theorem 1.3. �

7. Case λ ≥ 2

The case λ ≥ 2 (p > 0) is even easier to study since there is no reduction process.
Observe that the linear and the non-linear case are essentially the same. Indeed, in the non-linear case,

P(F̃n+1/F̃n ≥ 1|F̃n−1, F̃n) ≥ p and if F̃n+1/F̃n ≥ 1, then F̃n+2/F̃n+1 ≥ 1. Therefore, with probability 1, there ex-
ists N+ such that for all n ≥ N+, the quotients F̃n+1/F̃n are larger than 1. Moreover, for n ≥ N+, there is no need to
take the absolute value and the sequence behaves like in the linear case. We thus concentrate on the linear case.

We now fix λ ≥ 2. The sequence of quotients Qn := Fn/Fn−1 is a real-valued Markov chain with probability
transitions

P
(
Qn+1 = fR(q)|Qn = q

)= p and P
(
Qn+1 = fL(q)|Qn = q

)= 1 − p,

where fR(q) := λ + 1/q and fL(q) := λ − 1/q .

Let B := λ+
√

λ2−4
2 ∈ [1, λ] be the largest fixed point of fL. Note that we have P(Qn+1 ≥ λ|Qn) ≥ min(p,1 − p)

for any n ≥ 2 and, again, if Qn ≥ B , then Qn+1 ≥ B . Thus, with probability 1, there exists N+ such that for all
n ≥ N+, the quotients Qn are larger than B . Without loss of generality, we can henceforth assume that the initial
values a and b are such that Q2 ≥ B .

We inductively define sub-intervals of R+ indexed by finite sequences of R’s and L’s:

IR := fR

([B,∞])= [λ,λ + 1

B

]
and IL := fL

([B,∞])= [B,λ],
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and for any finite sequence X in {R,L}∗,

IXR := fR(IX) and IXL := fL(IX).

Obviously, all these intervals are included in [B,λ + 1
B

].

Lemma 7.1. Let W and W ′ be two finite words in {R,L}∗.

• If W is a suffix of W ′, then IW ′ ⊂ IW ;
• If neither W is a suffix of W ′ nor W ′ is a suffix of W , then IW and IW ′ have disjoint interiors.

Proof. The first assertion is an easy consequence of the definition of IW . To prove the second one, consider the largest
common suffix S of W and W ′. Since LS and RS are suffix of W and W ′, by the first assertion, it is enough to prove
that ILS and IRS have disjoint interiors. This can be shown by induction on the length of S, using the fact that fR and
fL are monotonic on [B,∞]. �

Lemma 7.2. Let (Wi)i≥1 be a sequence of R’s and L’s. Then
⋂

n≥1 IWn···W1 is reduced to a single point.

Proof. By Lemma 7.1, IWn+1Wn···W1 ⊂ IWn···W1 . Since the intervals are compact and non-empty, their intersection is
non-empty. It remains to prove that their length goes to zero. First consider the case λ > 2. The derivatives of fL and
fR are of modulus less than 1/B2 < 1. Therefore, the length of IWn···W1 is less than a constant times (1/B2)n. Let us
turn to the case λ = 2. Observe that ILj = [1,

j+1
j

], which is of length 1/j . Hence, if Wn · · ·W1 contains j consecutive
L’s, then IWn···W1 is included, for some r < n, in ILj Wr ···W1

= fW1 ◦ · · · ◦ fWr (ILj ) which is of length less than 1/j

(recall that the derivatives of fL and fR are of modulus less than 1). On the other hand, the derivatives of fL ◦ fR

and fR ◦ fR are of modulus less than 1/(2B + 1)2 = 1/9 on [B,∞]. Therefore, considering the maximum number of
consecutive L’s in Wn · · ·W1, we obtain supWn···W1

|IWn···W1 | −→
n→∞ 0. �

Fig. 3. First stages of the construction of the measure μp,2.

We deduce from the preceding results the invariant measure of the Markov chain (Qn).

Corollary 7.3. The unique invariant probability measure μp,λ of the Markov chain (Qn) = (Fn/Fn−1) is given by

μp,λ(IW ) := p|W |R (1 − p)|W |L (17)

for any finite word W in {R,L}∗, where |W |R and |W |L respectively denote the number of R’s and L’s in W .
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We can now conclude the proof of Theorem 1.4 by invoking a classical theorem about law of large numbers for
Markov chain (see e.g. [8], Theorem 17.0.1).

Note that the explicit form of the invariant measure when p = 1/2 and λ ≥ 2 was already given by Sire and
Krapivsky [12].

8. Variations of the Lyapunov exponents

8.1. Variations with p

Theorem 8.1. For any integer k ≥ 3, the function p �→ γ̃p,λk
is increasing and analytic on ]1/k,1[, and the function

p �→ γp,λk
is increasing and analytic on ]0,1[. Moreover,

lim
p→0

γp,λk
= lim

p→1/k
γ̃p,λk

= 0 (18)

and

lim
p→1

γp,λk
= γ1,λk

= lim
p→1

γ̃p,λk
= γ̃1,λk

= log

(λk +
√

λ2
k + 4

2

)
. (19)

For any λ ≥ 2, the function p �→ γp,λ is increasing and analytic on ]0,1[.

The proof of the theorem relies on the following proposition, whose proof is postponed to the end of the section.

Proposition 8.2. Let (Xi) be a sequence of letters in the alphabet {R,L} and (X′
i ) be a sequence of letters in the

alphabet {R,L} obtained from (Xi) by turning an L into an R. If λ = λk for some k ≥ 3, then, in the non-linear case,
any label F̃n coded by the sequence (Xi) is smaller than the corresponding label F̃ ′

n coded by (X′
i ). If λ ≥ 2, and if

F2/F1 ≥ 1, any label Fn coded by the sequence (Xi) is smaller than the corresponding label F ′
n coded by (X′

i ).

Proof of Theorem 8.1. Let λ = λk for some integer k ≥ 3. Let 1/k < p ≤ p′ ≤ 1. Let (Xi) (respectively (X′
i )) be

a sequence of i.i.d. random variables taking values in the alphabet {R,L} with probability (p,1 − p) (respectively
(p′,1 − p′)). We can realize a coupling of (Xi) and (X′

i ) such that for any i, Xi = R implies X′
i = R. From Propo-

sition 8.2, it follows that the label F̃n coded by (Xi) is always smaller than the label F̃ ′
n coded by (X′

i ). We get
that

γ̃p,λk
= lim

1

n
log F̃n ≤ lim

1

n
log F̃ ′

n = γ̃p′,λk
.

Therefore, p �→ γ̃p,λk
is a non-decreasing function on [1/k,1].

Observe that p �→ pR is non-decreasing in both (linear and non-linear) cases. Hence, the function ρ :p �→
k−1
√

1 − pR is non-increasing in both cases. We conclude that p �→ γp,λk
is non-decreasing on [0,1].

Since γp,λk
> 0 for 0 < p < 1, the upper Lyapunov exponent associated to the product of random matrices is

simple, and we know from [9] that γp,λk
is an analytic function of p ∈]0,1[, thus it is increasing. Via the dependence

on ρ which is an analytic function of p, we get that γ̃p,λk
is an analytic increasing function of p ∈]1/k,1[.

Now, observe that ρ �−→ ∫∞
0 logx dνk,ρ(x) is continuous on [0,1] (as the uniform limit of continuous functions).

When p goes to zero in the linear case (or p → 1/k in the non-linear case), pR tends to 0 and ρ tends to 1. By
continuity of the integral, we obtain (18) using Remark 5.2. When p = 1, the deterministic sequence Fn = F̃n grows
exponentially fast, and the expression of γ1,λk

follows from elementary analysis.
When λ ≥ 2 (we do not need to distinguish the linear case from the non-linear cases), the proof is handled in the

same way, using Proposition 8.2. �

Proof of Proposition 8.2 when λ ≥ 2. We let the reader check that in this case, for all s ≥ 0 the matrix RLs has
non-negative entries. Suppose the difference between (Xi) and (X′

i ) occurs at level j . For any n ≥ j , the sequence
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X′
j · · ·X′

n can be decomposed into blocks of the form RLs , s ≥ 0, hence the product of matrices X′
j · · ·X′

n has
non-negative entries. If n ≥ j , we can thus write F ′

n as a linear combination with non-negative coefficients: F ′
n =

C1F
′
j−2 + C2F

′
j−1. Moreover, Fn = −C1Fj−2 + C2Fj−1 = −C1F

′
j−2 + C2F

′
j−1, hence Fn ≤ F ′

n (since F2/F1 ≥ 1,
all Fn’s are positive). �

The proof of Proposition 8.2 when λ = λk uses three lemmas. The first one can be viewed as a particular case
when the sequence of R’s and L’s is reduced.

Lemma 8.3. Let λ = λk . Let a > 0, b > 0, j1 ≥ 0 and j2 ≥ 0 such that j1 + 1 + j2 ≤ k − 2. If (a′, b′) =
(a, b)RLj1RLj2 and (a′′, b′′) = (a, b)RLj1+1+j2 , then b′ ≥ b′′.

Proof. For any � ∈ {0, . . . , j2}, set (x�, x�+1) := (a, b)RLj1RL�, and (y�, y�+1) := (a, b)RLj1+1+�. Then the quo-
tient x�+1/x� lies in I� (see Section 3), whereas the quotient y�+1/y� lies in Ij1+1+�. It follows that y�+1/y� ≤ x�+1/x�,
and since x0 = y0, we inductively get that for all � ∈ {0, . . . , j2 + 1}, y� ≤ x�. The lemma is proved, observing that
b′ = xj2+1 and b′′ = yj2+1. �

Lemma 8.4. Let λ = λk . Let (Xi)i≥2 be a sequence of matrices in {R,L}, which does not contain k − 1 consecutive
L’s and such that X2 = R. Let x0 > 0, x1 > 0, and set inductively (xi, xi+1) := (xi−1, xi)Xi+1. Then for any i ≥ 0,
xi+k ≥ xi .

Proof. If Xi+1 = R, this is just a repeated application of the following claim: If a > 0, b > 0, 0 ≤ j ≤ k − 3, and if
we set (a′, b′) := (a, b)RLj , then b′ ≥ b. Indeed, by (5), we have b′ ≥ b sin((j + 2)π/k)/ sin(π/k) ≥ b.

If Xi+1 = L, we first prove the lemma when the sequence Xi+1 · · ·Xi+k contains only one R: Xi+j = R for some
j ∈ {2, . . . , k − 1} (observe that j �= k, otherwise there would be k − 1 consecutive L’s). We proceed by induction on

j . If j = 2, then (xi+k−1, xi+k) = (xi−1, xi)LRLk−2. By (5), the second column of RLk−2 is
(

1
0

)
, thus xi+k = xi .

Now, assume j > 2 and that we have proved the inequality up to j − 1. Since the sequence of matrices starts with an
R and does not contain k − 1 consecutive L’s, we have xi+1/xi ∈ I� for some � ≤ k − j (see Section 3). In particular,
xi+1/xi ≥ bk−j+1. Now define x′

i+k+1 by (xi+k, x
′
i+k+1) := (xi+k−1, xi+k)L. We have x′

i+k+1/xi+k ∈ Ik−j+1, thus is
bounded above by bk−j+1. Using the induction hypothesis x′

i+k+1 ≥ xi+1, we conclude that xi+k ≥ xi .
Finally, assume that the sequence Xi+1 · · ·Xi+k starts with an L and contains several R’s. Turning the last R into

an L, we can apply Lemma 8.3 to compare xi+k with the case where there is one less R, and prove the result by
induction on the number of R’s. �

Lemma 8.5. Let λ = λk . Let F̃n be inductively defined by F̃0 ≥ 0, F̃1 ≥ 0 and F̃n+1 = |λF̃n − F̃n−1| for any n ≥ 1.
Then for any n ≥ 0, F̃n+k ≤ F̃n.

Proof. For n ≤ 0, let Gn := F̃−n ≥ 0. Then, for any n ≤ −1, we have

(Gn,Gn+1) =
{

(Gn−1,Gn)L if λF̃n ≥ F̃n−1,
(Gn−1,Gn)R otherwise.

Moreover, we can assume that the sequence of matrices in {R,L} corresponding to (Gn) never contains k − 1 consec-

utive L’s. Indeed, the second column of Lk−1 is
(−1

0

)
. Thus, if we had k − 1 consecutive L’s, we could find n such

that −Gn−1 = Gn+k−1, which is possible only if Gn−1 = Gn+k−1 = 0. But if such a situation occurs we can always
turn the first L into an R without changing the sequence (because (0,Gn)R = (0,Gn)L). The result is thus a direct
application of Lemma 8.4. �

Proof of Proposition 8.2 when λ = λk . Suppose the difference between (Xi) and (X′
i ) occurs at level j . We decom-

pose (Xi)i≥j as LLrY and (X′
i )i≥j as RLrY , where 0 ≤ r ≤ +∞ and Y = (Yi)i≥j+r+1 is a sequence of letters in the

alphabet {R,L} such that Yj+r+1 = R.
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Suppose first that, after the difference, all letters are L’s (Y = ∅). Let j1 ∈ {0, . . . , k − 2} be such that F̃j−1/F̃j ∈
Ij1 . Without loss of generality, we can assume that the sequences (Xi) and (X′

i ) are reduced before their first differ-
ence. Then, Xj−j1−1 · · ·Xj−1 = X′

j−j1−1 · · ·X′
j−1 = RLj1 .

By Lemma 8.3, F̃ ′
j+s ≥ F̃j+s for all 0 ≤ s ≤ j2, where j2 := k − 3 − j1.

Now, by Lemma 8.4, for all 1 + j2 ≤ s ≤ k − 2, F̃ ′
j+s ≥ F̃ ′

j+s−k , which is equal to F̃j+s−k since s < k. On the

other hand, when s = j2 + 1, we have F̃j+j2+1−k = F̃j+j2+1 because Xj−j1−1 · · ·Xj+j2+1 = RLk−1. Moreover, by
Lemma 8.5, F̃j+s−k ≥ F̃j+s for all 1 + j2 < s ≤ k − 2. We thus get that F̃ ′

j+s ≥ F̃j+s for all j2 + 1 ≤ s ≤ k − 2.

If s ≥ k − 1, reducing the pattern RLk−1 in the sequence (Xj )i≥j , we have F̃j+s = F̃ ′
j+s−k which is larger than

F̃ ′
j+s by Lemma 8.5.

Suppose now that the suffix Y is reduced. The above argument shows that all labels up to j + r are well ordered:
In particular, F̃j+r−1 ≤ F̃ ′

j+r−1 and F̃j+r ≤ F̃ ′
j+r . Since Y is reduced, we can write, for any n ≥ j + r , (F̃n, F̃n+1) =

(F̃j+r−1, F̃j+r )Yj+r+1 · · ·Yn+1, where each Yi is interpreted as the corresponding matrix (the same equality is valid if
we replace F̃ by F̃ ′). The product Yj+r+1 · · ·Yn+1 can be decomposed into blocks of the form RL�, with 0 ≤ � ≤ k−2,
which are matrices with non-negative entries. Therefore, for any n ≥ j + r , the label F̃n is a linear combination of
F̃j+r−1 and F̃j+r , with non-negative coefficients. Moreover, it is also true with the same coefficients if we replace F̃

by F̃ ′. We conclude that F̃n ≤ F̃ ′
n.

In the general case, we make the reduction of (Yi)j+r+1≤i≤n. We are left either with a reduced sequence or with a
sequence of L’s, which are the two situations we have already studied. �

Remark 8.6. In [7], a formula for the derivative of γp,1 with respect to p was given, involving the product measure
ν3,ρ ⊗ ν3,ρ . We do not know whether this formula can be generalized to other k’s.

8.2. Variations with λ

For p = 1, the deterministic sequence Fn = F̃n grows exponentially fast, and we have in that case

γ̃1,λ = γ1,λ = log

(
λ + √

λ2 + 4

2

)
,

which is increasing with λ.
We conjecture that, when p is fixed, γp,λk

and γ̃p,λk
are increasing with k, and that γp,λ is increasing with λ for

λ ≥ 2 (see Fig. 4).

Fig. 4. The value of γp,λ (linear case, left) and γ̃p,λ (non-linear case, right) for λ = λk , k = 3,4,5,10, λ = 2 (bold), λ = 2.05, 2.1, 2.5 and 3.
Numerical computations support the conjecture that γp,λ and γ̃p,λ are increasing with λ.
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9. Connections with Embree–Trefethen’s paper

9.1. Positivity of the Lyapunov exponent

We have proved that the largest Lyapunov exponent corresponding to the linear λ-random Fibonacci sequence is
positive for all p. In [2], Embree and Trefethen study a slight modification of our linear random Fibonacci sequence
when p = 1/2. To be exact, they study the random sequence xn+1 = xn ± βxn−1, which by a simple rescaling gives
our linear λ-random Fibonacci sequence where λ = 1/

√
β (see our Introduction). However, the exponential growth is

not preserved by this rescaling. More precisely, the exponential growth σ(β) = lim |xn|1/n of Embree and Trefethen’s
sequence satisfies

logσ(β) = γ1/2,λ − logλ.

In particular, σ(β) < 1 if and only if γ1/2,λ < logλ, which according to the simulations described in their paper
happens for β < β∗ ≈ 0.70258 . . . (which corresponds to λ > 1.19303 . . .).

By Theorem 8.1, the function p �→ γp,λ is continuous and increasing from 0 to γ1,λ > logλ. Hence there exists a
unique p∗(λ) ∈ [0,1] such that, for p < p∗, γp,λ < logλ and for p > p∗, γp,λ > logλ. According to [2], for λ = 1 we
have p∗ < 1/2, and for λ = λk (k ≥ 4) and λ ≥ 2, p∗ > 1/2.

For λ ≥ 2, we can indeed prove that γ1/2,λ < logλ: By Jensen’s inequality, we have

γ1/2,λ < log

(∫ λ+1/B

B

x dμ1/2,λ

)
,

which is equal to logλ by symmetry of the measure μ1/2,λ.
For λ = 1, we know that γp,1 > 0 for all p > 0 thus p∗ = 0. When λ = λk , k ≥ 4, numerical computations of the

integral confirm that p∗ > 1/2, but we do not know how to prove it.

9.2. Sign-flip frequency

Embree and Trefethen introduce the sign-flip frequency as the proportion of values n such that FnFn+1 < 0, and give

(without proof) the estimate 2−πλ/
√

4−λ2
for this frequency, as λ → 2, λ < 2.

Note that, for λ ≥ 2, there are no sign change as soon as n is large enough, and the sign-flip frequency is zero.
For λ = λk , recall that for n large enough, the sign of the reduced sequence (F r

n ) is constant (see Lemma 3.2).
Moreover, by (6) and the fact that for all 0 ≤ j ≤ k − 2 the matrix RLj has non-negative entries (see (5)), the product
FnF

r
n changes sign if and only if a pattern RLk−1 is removed. Thus, the sign-flip frequency is equal to the frequency

of deletions in the reduction process.
Note that we have to make sure that this frequency indeed exists. This can be seen by considering the reduction of

the left-infinite i.i.d. sequence (X∗)0−∞ (Section 4.1), since for n large enough, deletions in the reduction process of
(X)n3 occur at the same times as in the reduction process of (X∗)n−∞. In the latter case, the ergodic theorem ensures
that the frequency σ of deletions exists and is equal to the probability that (X∗)0−∞ be not proper. By Lemma 4.2,
(X∗)0−∞ is not proper if and only if there exists a unique � > 0 such that (X∗)0

−� is an excursion, and (X∗)−�−1−∞ is
proper. Thus,

σ =
∑

w excursions

P(w)(1 − σ).

By (11), we get that the sign-flip frequency is equal to

σ = σ(λk,p) = p(1 − pR)

p + (1 − p)pR + p(1 − pR)
. (20)
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Now, for a fixed p ∈]0,1[, we would like to obtain an estimate for σ as k → ∞. First, observe that pR = pR(k) →
1 as k → ∞. Indeed, recalling the expression of the function g given by (8), for any x ∈]0,1[, we have g(x) < 0 for
k large enough, which implies pR > x. Then, since pR satisfies

1 − pR =
(

1 − ppR

p + (1 − p)pR

)k−1

,

we get that pR → 1 exponentially fast with k. Using this estimation in the above equation, elementary computations
lead to

1 − pR ∼
k→∞(1 − p)k−1.

Thus,

σ(λk,p) ∼
k→∞p(1 − p)k−1.

For p = 1/2, this proves the estimate provided in [2] in the special case λ = λk .
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