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Abstract. We prove that the notions of Krengel entropy and Poisson entropy for infinite-measure-preserving transformations
do not always coincide: We construct a conservative infinite-measure-preserving transformation with zero Krengel entropy (the
induced transformation on a set of measure 1 is the Von Neumann–Kakutani odometer), but whose associated Poisson suspension
has positive entropy.

Résumé. Nous prouvons que les notions d’entropie de Krengel et d’entropie de Poisson pour les transformations préservant une
mesure infinie ne coïncident pas toujours : nous construisons une transformation conservative préservant une mesure infinie qui a
une entropie de Krengel nulle (la transformation induite sur un ensemble de mesure 1 est l’odomètre de Von Neumann–Kakutani),
mais dont la suspension de Poisson a une entropie strictement positive.
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1. Introduction

1.1. Entropy for infinite-measure-preserving transformations

There exist several notions of entropy for infinite transformations, which elegantly generalize Kolmogorov’s entropy
of a probability-preserving transformation. Krengel [4] comes down to the finite-measure case by considering the
entropy of the induced transformation on a set of finite measure: The Krengel entropy of a conservative measure-
preserving transformation (X, B,μ,T ) is defined as

hKr(X, B,μ,T ) := sup
A∈F+

μ(A)h(A, B ∩ A,μA,TA),

where F+ is the collection of sets in B with finite positive measure, μA is the normalized probability measure on A

obtained by restricting μ to B ∩ A, and TA :A → A is the induced map on A. Recall that this map is defined by

TA(x) := T rA(x)(x),

where rA(x) := min{k ≥ 1: T k(x) ∈ A} is the first-return-time map associated to A. As soon as T is not purely
periodic, Krengel proved that

hKr(X, B,μ,T ) = μ(A)h(A, B ∩ A,μA,TA),

where A is any finite-measure sweep-out set (i.e., a set such that
⋃

n≥0T
−nA = X).
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The Parry entropy of an infinite-measure-preserving transformation T has been defined in [7] as the supremum of
the conditional entropy of C with respect to T −1 C , for all σ -finite sub-σ -algebras C such that T −1 C ⊂ C .

Recall now that to each infinite-measure-preserving transformation T we can associate a probability-preserving
transformation T∗ called its Poisson suspension, and which can be described as follows (we refer to [8] for details):
We consider a Poisson process on X with intensity μ, which we can consider as a random collection of particles.
These particles are distributed over X in such a way that, denoting by NB the random number of particles in any finite-
measure set B , for any finite collection of pairwise disjoint, finite-measure sets B1, . . . ,Bn ∈ B, the random variables
NB1, . . . ,NBn are independent, and follow Poisson distributions with respective parameters μ(B1), . . . ,μ(Bn). Then
T∗ is defined on the canonical space of this Poisson process, and it consists in moving individually each of these
particle according to the transformation T on X. The Poisson entropy of an infinite-measure-preserving transformation
was defined by Roy [8] as the Kolmogorov entropy of its Poisson suspension.

Relations between these notions of entropy are studied in [3]: On large classes of transformations (e.g., quasi-finite
transformations, rank-one transformations), it is proved that Poisson entropy is equal to Krengel entropy and to Parry
entropy. Moreover, in any case, Parry entropy is dominated by both Krengel and Poisson entropy.

It was asked in [3] whether, for any conservative measure-preserving transformation, these three definitions always
coincide. The purpose of the present paper is to show that the answer is negative, by constructing a counterexample.

Theorem 1.1. There exists a conservative infinite-measure-preserving transformation with zero Krengel entropy
(hence zero Parry entropy), but whose associated Poisson suspension has positive entropy.

2. Construction

2.1. Von Neumann–Kakutani odometer

The transformation T is constructed as a tower over the Von Neumann–Kakutani odometer S. Let us recall the con-
struction of the latter by cutting and stacking (see Fig. 1). We start with the interval A := [0,1]. The first step consists
in cutting A into two sub-intervals A1 and A \ A1 of measure 1/2, and stacking A \ A1 over A1. We get a tower of
height 2 which we call Tower 1. After step n, A has been cut into 2n sub-intervals which are stacked to get Tower n.
This means that at this step each point of A (except those lying on the top of the tower) is mapped by S to the point of
A lying above it. We construct Tower n + 1 by cutting Tower n into two equal parts. We call An+1 the left half of the
top interval of Tower n and we stack the right part of the tower over An+1, thus dividing by 2 the measure of the set
where S is not yet defined. Repeating this procedure defines the Von Neumann–Kakutani odometer which preserves
the Lebesgue measure on A. It is well known that the odometer S is ergodic and has zero entropy.

2.2. Construction of T

T is constructed on R+ in such a way that the induced transformation TA coincides with the odometer previously
defined. T is completely defined (up to isomorphism) by giving for each point x ∈ A the first return time rA(x) to A.

We fix an increasing sequence of integers (Mn)n≥0, with Mn → ∞. For any n ≥ 1, we choose a large enough
integer kn (to be precised later). We define the first return time to A so that its restriction to An is uniformly distributed
on {Mn,Mn + 1, . . . ,Mn + kn − 1} for any n.

We will see in Section 4 that by choosing kn large enough, the entropy of T∗ is positive.

Fig. 1. First steps in the construction of the Von Neumann–Kakutani odometer by cutting and stacking.



370 É. Janvresse and T. de la Rue

3. Poisson approximation lemma

The purpose of this section is to prove the key lemma. This lemma roughly states that when kn is large enough, it
is almost impossible in the Poisson suspension to keep track individually of the particles when they leave An if we
only have access to the number of particles in A. For this, we compare two processes: The first one is simply an i.i.d.
sequence of Poisson random variables, whereas the second one modelizes particles leaving An and coming back to A.
The comparison between the two processes uses the notion of d̄-distance, of which we recall some properties.

3.1. The d̄-distance

The d̄-distance between two stationary processes has been introduced by Ornstein for the proof of the isomorphism
theorem of Bernoulli shifts. We refer to [6] or [9] for the properties of this distance which we use later and which we
recall here.

Let ξ and ζ be two stationary processes taking values in a countable alphabet B. For any integers p < q , we denote
by ξ |qp the finite sequence (ξp, ξp+1, . . . , ξq).

For L ≥ 1, let JL(ξ, ζ ) be the set of all joinings of ξ |L1 and ζ |L1 , that is probability distributions on B
L × B

L whose
marginals are the distributions of ξ |L1 and ζ |L1 . We first define d̄L for any L ≥ 1, by

d̄L(ξ, ζ ) := min
λ∈JL(ξ,ζ )

Eλ

[
dL

(
ξ |L1 , ζ |L1

)]
,

where dL is the Hamming distance between sequences of length L:

dL(x1 · · ·xL, z1 · · · zL) := 1

L

L∑
1

1xi 	=zi
.

Then, the d̄-distance between ξ and ζ is defined by

d̄(ξ, ζ ) := sup
L≥1

d̄L(ξ, ζ ).

It can be shown that d̄(ξ, ζ ) is also the minimum of λ(ξ0 	= ζ0) when λ ranges over all stationary joinings of ξ and ζ .
The two key properties of the d̄-distance that we shall use are: On the one hand, the fact that entropy of processes

close in d̄-distance can be compared (Lemma 3.1). On the other hand, a practical tool to estimate the d̄-distance
between processes using conditional distributions on the past: If, for all large enough n,

∑
b∈B

∣∣P(
ξ0 = b|ξ |−1−n

) − P
(
ζ0 = b|ζ |−1−n

)∣∣ < ε (1)

for all past ξ |−1−n outside a set of measure ε and all past ζ |−1−n outside a set of measure ε, then d̄(ξ, ζ ) ≤ 3ε. Moreover,
the same conclusion holds if we replace in (1) the conditional distributions with respect to the past by conditional
distributions with respect to finer σ -algebras.

The fact that entropy is a continuous function of processes taking values in a given finite alphabet, when these
processes are topologized with the d̄-distance, is well known (see, e.g., [9], p. 100). This is however no longer true if
we consider processes taking countably many values. In this case, entropy is only a lower semicontinuous function of
the process.

Lemma 3.1. Let ξ be a stationary process taking values in a countable alphabet B which has finite entropy. For any
ε > 0, there exists δ > 0 such that any stationary process ζ taking values in the same alphabet B with d̄(ξ, ζ ) < δ

satisfies h(ζ ) > h(ξ) − ε.
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Proof. Without loss of generality we can assume B = Z+. For any integer � > 0 we define the process (ξ ∧ �) taking
values in the finite alphabet {0,1, . . . , �} by

(ξ ∧ �)x =
{

ξx if ξx < �,
� otherwise.

The σ -algebra generated by the process (ξ ∧ �) increases to the σ -algebra generated by ξ . Hence we can choose �

large enough so that h(ξ ∧ �) > h(ξ) − ε/2. By continuity of the entropy in the case of a finite alphabet, we can find
δ > 0 such that any process taking values in {0,1, . . . , �} at d̄-distance at most δ from (ξ ∧ �) has entropy at least
h(ξ) − ε. Now, if d̄(ξ, ζ ) < δ, then d̄((ξ ∧ �), (ζ ∧ �)) < δ (where (ζ ∧ �) is defined from ζ in a similar way), hence
h(ζ ) ≥ h(ζ ∧ �) ≥ h(ξ) − ε. �

3.2. Comparison between connected and disconnected processes

Let A be a finite alphabet, P B and P W be two probability measures on A and λA×A be a joining of P B and P W .
Let δ be some fixed positive real number. We define two processes ξ (the disconnected process) and ζ (the connected
process) on (NA)Z, and estimate the d̄-distance between them.

The process ξ is constructed from two independent sequences of i.i.d. random variables distributed according to
the Poisson distribution of parameter δ/2, which can be interpreted as numbers of black and white particles lying on
each site of Z. Then to each black (resp., white) particle we randomly and independently associate a label picked in A

according to P B (resp., P W ). For any x ∈ Z and any labels a, b ∈ A, ξB
x (a) (resp., ξW

x (b)) is the total number of black
(resp., white) particles labelled by a (resp., b) at position x. In other words, the process ξ associates in an i.i.d. way to
each site x ∈ Z a finite sequence ξx = (ξB

x (a), ξW
x (b)))a,b∈A of independent random variables respectively distributed

according to the Poisson distribution of parameter P B(a)δ/2 and P W(b)δ/2. The process ξ is called the disconnected
process because its two components ξB and ξW are independent.

Let k and M be two integers. The process ζ is also constructed from black and white particles on Z, but which
are no longer independent. This is why we call it the connected process. The number of black particles at each site
is given by a sequence of i.i.d. random variables distributed according to the Poisson distribution of parameter δ/2.
For each black particle at position x ∈ Z, we first pick a random integer j , uniformly in {M,M + 1, . . . ,M + k − 1}
and independently of all other particles. Then we link the black particle to a white particle that we put at position
x + j . For each such couple of black and white particles, a couple of labels is picked in A × A with probability
λA×A: The first label is associated to the black particle and the second label to the white one. Then, for any x ∈ Z,
ζx = (ζB

x (a), ζW
x (b)))a,b∈A denote the number of black particle labelled by a and the number of white particles

labelled by b at position x.

Lemma 3.2. For any ε > 0, if k is large enough, d̄(ξ, ζ ) < ε.

Proof (Simple case). We first prove the lemma in the case where A is reduced to a singleton. Since all particles have
the same label, we just forget it and simply count the number of black and white particles on each site.

We now prove that if k is large enough, for any n ≥ M + k,

∑
j,�∈N

∣∣∣∣P (
ζB

0 = j, ζW
0 = �|ζ |−1−n

) − e−δ/2(δ/2)j

j !
e−δ/2(δ/2)�

�!
∣∣∣∣ < ε,

with probability 1 − ε on ζ |−1−n. Since ζB
0 is Poisson distributed with parameter δ/2, and independent from ζ |−1−n, and

since ζW
0 is independent from ζB

0 conditionally to the past, it is enough to prove that if k is large enough, for any
n ≥ M + k,

∑
�∈N

∣∣∣∣P (
ζW

0 = �|ζ |−1−n

) − e−δ/2(δ/2)�

�!
∣∣∣∣ < ε,

with probability 1 − ε on ζ |−1−n.
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Fig. 2. The enriched past.

In fact we rather condition with respect to an enriched past (see Fig. 2): Formally, the enriched past is the σ -algebra
generated by the number of black and white particles on each site x ∈ {−n, . . . ,−1}, and the knowledge of all links
existing between a black particle and a white particle both lying in {−n, . . . ,−1}.

Conditionally to the enriched past, we can distinguish two kinds of black particles between −n and −1: Those
which are linked to a white particle lying on the left of 0, and those, called free particles, whose white particle’s
position is unknown. Observe that only free particles may have some influence on ζW

0 . Hence, black particles lying on
the left of site −(M + k − 1) have no influence on ζW

0 since they are not free. Black particles lying on the right of site
−M are free but nevertheless have no influence on ζW

0 since a black particle is linked to a white particle at distance at
least M .

So it remains to study the influence on ζW
0 of free black particles at sites between −(M + k − 1) and −M . For

1 ≤ j ≤ k let us denote by Fj the number of free particles at site −(M +k)+j . Any black particle at site −(M +k)+j

has probability j/k to be free. Therefore, Fj follows the Poisson distribution with parameter δj
2k

.
Fix 1 ≤ j ≤ k. Assume there is a free particle at site −(M + k) + j . Since there are j possible positions for its

white particle, the latter has probability 1/j to lie at site 0. Hence, conditionally to our enriched past, the number of
white particles at site 0 can be written as

k∑
j=1

Fj∑
�=1

B
j

� ,

where (B
j
� ) are independent Bernoulli random variables with respective parameter 1/j . The law of such a sum of

independent Bernoulli variables is close to a Poisson distribution of parameter δ/2 as soon as the sum of the parameters
is close to δ/2 and all parameters are small enough (see [2], Theorem 23.2, p. 312). Therefore we can choose a large
enough integer J , and ε1 small enough so that, if Z is a sum of independent Bernoulli random variables, each with
parameter less than 1/J and such that the sum of parameters is within ε1 of δ/2, then

∑
�≥0

∣∣∣∣P(Z = �) − exp(−δ/2)
(δ/2)�

�!
∣∣∣∣ < ε.

We have now to avoid bad configurations, that is configurations of the enriched past which have free particles close
to −(M +k −1) giving rise to Bernoulli with large parameters, and configurations such that the sum of the parameters
is not close enough to δ/2.
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Control of the parameters’ size. We compute the probability that no free particle lie between −(M + k) + 1 and
−(M + k) + J :

P(Fj = 0, j = 1, . . . , J ) =
J∏

j=1

exp

(
− δj

2k

)
= exp

(
−δJ (J + 1)

4k

)
.

Under this condition, ζW
0 is (conditionally to the enriched past) the sum of independent Bernoulli variables with

parameters smaller than 1/J . If k is large enough, this happens with probability larger than 1 − ε/2.
Control of the parameters’ sum. Since the Fj are independent and Poisson distributed with parameter δj

2k
, the

expected value of the sum S := ∑k
j=1 j−1Fj of the parameters is δ/2, and its variance is

varS =
k∑

j=1

1

j2

δj

2k
= δ

2k

k∑
j=1

1

j
.

Hence, if k is large enough,

P
(|S − δ/2| < ε1

)
> 1 − ε/2.

Putting things together, we have proved that with probability larger than 1 − ε on the enriched past, the conditional
distribution of the number ζW

0 of white particles at site 0 satisfies

∑
�≥0

∣∣∣∣P(
ζW

0 = �|enriched past
) − exp(−δ/2)

(δ/2)�

�!
∣∣∣∣ < ε.

This proves Lemma 3.2 when A is reduced to a singleton. �

Proof (General case). We consider the family of independent processes ζ a,b = (ζB,a,b, ζW,a,b), (a, b) ∈ A × A,
which counts the number of black and white ζ particles at x belonging to a pair of black and white particles respec-
tively labelled by a and b. Then ζ a,b is a simple-case ζ process, for which the expected number of black particles per
site is δλA×A(a, b)/2. From the proof in the simple case, we know that as soon as k is large enough, the d̄-distance
between ζ a,b and ξa,b is smaller than ε/|A|2, where ξa,b = (ξB,a,b, ξW,a,b) is composed of two i.i.d. sequences of
Poisson random variables of parameter δλA×A(a, b)/2. We can recover ζB

x (a) and ζW
x (b) by

ζB
x (a) =

∑
b∈A

ζB,a,b
x and ζW

x (b) =
∑
a∈A

ζW,a,b
x .

On the other hand,
∑

b∈A
ξB,a,b (resp.,

∑
a∈A

ξW,a,b) has the same distribution as ξB(a) (resp., ξW (b)): It is an i.i.d.
sequence of Poisson random variables of parameter P B(a)δ/2 (resp., P W(b)δ/2). Summing over a and b, it follows
that d̄(ζ, ξ) < ε. �

4. Positive Poisson entropy

We denote by ξ (∞) the stationary process living in the Poisson suspension of our transformation T , defined by

ξ (∞)
x := number of particles in A at time x.

The purpose of this section is to show that the entropy of the process ξ (∞) is positive as soon as the kn’s are chosen
large enough. This will be proved by showing that the d̄-distance between ξ (∞) and an i.i.d. sequence ξ (0) of random
Poisson variables with parameter 1 can be made as small as we want. By Lemma 3.1, this will be enough to conclude.
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Fig. 3. First steps in the construction of the return time to A.

Our strategy is the following: As one goes along in the construction of the return time to A, we define a sequence
(T (n)) of infinite-measure-preserving transformations acting on R+. Then we consider the process ξ (n) living in the
Poisson suspension of T (n):

ξ (n)
x := number of particles in A at time x for the Poisson suspension over T (n).

The transformations T (n) will be constructed so that the process ξ (n) converge in d̄-distance to ξ .
The transformation T (0) is constructed by stacking infinitely many pairwise disjoints intervals of length 1, A being

one of them, into a doubly infinite tower, each interval being mapped onto the one just above. Therefore, as mentioned
previously, ξ (0) is an i.i.d. sequence of Poisson variables with parameter 1. At step n of the construction, we define
the return time to A on the subset An. This return time to A will be the same for all transformations T (m), m ≥ n, and
for the final transformation T . By choosing the return time adequately, we will make sure that

d̄
(
ξ (n−1), ξ (n)

)
< 2−nε,

so that for all n

d̄
(
ξ (0), ξ (n)

)
< ε. (2)

Let us describe the first step. Recall that Tower 1 is of height 2, with basis A1 (see Fig. 1). We cut A1 into k1 equal
subintervals, and we define on A1 the return time to A to be M1 + j − 1 on the j th subinterval. We insert Tower 1 into
a doubly infinite tower of intervals of length 1/2 and add spacers between A1 and its image by the odometer S: We
insert M1 + j − 2 spacers of width 1/(2k1) between the j th subinterval of A1 and its image by S. The transformation
T (1) is defined by mapping each point to the point right above it (see Fig. 3).

The process ξ (1) counts the number of particles in A at time x for the Poisson suspension over T (1): We interpret
points in A1 as black particles and points in A \ A1 as white particles. For the suspension over T (0), black and white
particles are independent, whereas for the suspension over T (1), they are linked through the return time to A of the
point corresponding to the black particle. Hence, a direct application of Lemma 3.2 in the simple case with no alphabet
gives that d̄(ξ (0), ξ (1)) < ε/2 when k1 is large enough.

Suppose the return time to A has already been defined on all Ai , 1 ≤ i ≤ n − 1. Consider Tower n. The return
time to A has already been defined on all rungs but the roof and An (which is the rung of level 2n−1). Let Rn−1
be the maximum value of the already defined return time to A on A1 ∪ · · · ∪ An−1. We consider the finite alphabet
A := {1, . . . ,Rn−1}2n−1−1. For each point y in An, let hB(y) ∈ A be the sequence of the return times to A when we
climb the first half of Tower n before reaching y, in other words hB(y) is the sequence of the last 2n−1 − 1 return
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times to A. Let hW(y) ∈ A be the sequence of the return times to A when we climb the second half of Tower n starting
from Sy. We denote by r(y) the return time to A, which is to be defined at this step. We want r(y) to be independent
of hB(y) and hW(y). To this end, we consider the finite partition of An generated by hB and hW . Each atom of this
partition is cut into kn equal pieces, and we define r to be Mn + j − 1 on the j th piece of each atom. Here is how
we define the transformation T (n): we insert Tower n into a doubly infinite tower of intervals of length 1/2n and
insert as many spacers as we need between the rungs of Tower n to achieve the already defined return time to A. The
transformation T (n) maps each point to the point right above it.

Let us turn to the estimation of d̄(ξ (n−1), ξ (n)) for n ≥ 2. We want to apply Lemma 3.2: Black particles are points
in An and white particles are points in SAn. To each point y in An, we associate the label hB(y) ∈ A, and to each
point Sy in SAn, we attach the label hW(y) ∈ A. Let the process ξ (resp., ζ ) count the numbers of black and white
particles together with their label in the suspension over T (n−1) (resp., T (n)). These processes are exactly of the form
studied in Lemma 3.2.

Now, observe that we can recover ξ (n−1) and ξ (n) from ξ and ζ :

ξ
(n−1)
0 =

∑
h∈A

ξB
0 (h) + ξB

h1
(h) + · · · + ξB

h1+···+h2n−1−1
(h) +

∑
h∈A

ξW
0 (h) + ξW−h1

(h) + · · · + ξW
−(h1+···+h2n−1−1)

(h)

and

ξ
(n)
0 =

∑
h∈A

ζB
0 (h) + ζB

h1
(h) + · · · + ζB

h1+···+h2n−1−1
(h) +

∑
h∈A

ζW
0 (h) + ζW−h1

(h) + · · · + ζW
−(h1+···+h2n−1−1)

(h).

It follows that, if ξ and ζ coincide on {−Rn−1(2n−1 − 1), . . . ,Rn−1(2n−1 − 1)}, then ξ
(n−1)
0 = ξ

(n)
0 . Let λ be a

stationary joining of ξ and ζ achieving the d̄-distance: We have d̄(ξ, ζ ) = λ(ξ0 	= ζ0). Then

d̄
(
ξ (n−1), ξ (n)

) ≤ λ
(
ξ

(n−1)
0 	= ξ

(n)
0

) ≤ 2nRn−1λ(ξ0 	= ζ0) = 2nRn−1d̄(ξ, ζ ).

By Lemma 3.2, d̄(ξ, ζ ) can be made arbitrarily small by choosing kn large enough. Hence we can assure that
d̄(ξ (n−1), ξ (n)) < 2−nε.

Finally, note that since Mn is increasing, the return time to A on the roof of Tower n (the union of Ai , i > n) will be
larger than Mn+1. Hence, for any L > 0, if n is large enough so that Mn+1 > L, the distribution of ξ (n)|L−1

0 coincides
with the distribution of ξ (∞)|L−1

0 . Therefore,

d̄L

(
ξ (∞), ξ (0)

) = d̄L

(
ξ (n), ξ (0)

) ≤ d̄
(
ξ (n), ξ (0)

)
< ε,

which implies

d̄
(
ξ (∞), ξ (0)

) ≤ ε.

5. Comments and open questions

In view of previously known results on the subject, some comments on the infinite-measure-preserving transformation
T constructed in Section 2 may be made.

First, although its construction is derived from the standard cutting-and-stacking procedure used to build the most
elementary rank-one system (the Von Neumann–Kakutani odometer), the transformation T is not even of finite rank.
Indeed, Proposition 10.1 in [3] shows that for finite-rank systems, both the Poisson and Krengel entropy vanish.

Second, it was also proved in [3] that Krengel and Poisson entropies coincide for quasi-finite transformations,
namely transformations for which there exists a sweep-out set A of measure 1 such that the return-time partition of
A has finite entropy. There exist only few examples of transformation for which the non quasi-finiteness has been
established: an unpublished example constructed by Ornstein has been mentioned by Krengel in [5], and the only
published example which we are aware of is a rank-one system, given by Aaronson and Park in [1]. Our construction
thus provides a new example of a non-quasi-finite transformation.
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After having proved that the different notions of entropy for infinite-measure-preserving transformations do not
always coincide, a natural question is to ask whether they are always ordered in the same way: Is it true that Poisson
entropy always dominates Krengel entropy? Can we at least decide whether zero Poisson entropy implies zero Krengel
entropy? And what about similar questions regarding the comparison between Parry entropy and Poisson entropy? It
may be worth recalling here that the equality of Parry entropy and Krengel entropy in the quasi-finite case was proved
by Parry in 1969 [7], but that the question whether they always coincide is, as far as we know, still open.
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