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Abstract

The Pascal adic transformation is one of the simplest examples of adic
transformations. We recall its construction by cutting and stacking and
prove that it is loosely Bernoulli.
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La transformation Pascal adique est lâchement Bernoulli.

Résumé

La transformation Pascal adique est un des exemples les plus simples de
transformations adiques. Nous rappelons sa construction par découpage
et empilement et montrons qu’elle est lâchement Bernoulli.

Mots-clefs : transformation adique, systèmes lâchement Bernoulli.

1 Introduction

The notion of adic transformation has been introduced by Vershik (see e.g.
[5], [4]), as a model in which the transformation acts on infinite paths in some
graphs, called Bratteli diagrams. As shown by Vershik, every ergodic automor-
phism of the Lebesgue space is isomorphic to some adic transformation, with
a Bratteli diagram which may be quite complicated. Vershik also proposed
to study the ergodic properties of an adic transformation in a given simple
graph, such as the Pascal graph which gives rise to the so-called Pascal adic

transformation.

1.1 The Pascal adic transformation

Here we recall the construction and some basic properties of the Pascal adic
transformation with parameter p, following the cutting and stacking model
exposed in [2]. Our space X is the interval [0, 1[, equipped with its Borel σ-
algebra A and the Lebesgue measure µ.

Let 0 < p < 1 be a fixed parameter. We start by dividing X into two

subintervals P0
def
= [0, p[ and P1

def
= [p, 1[. Let P

def
= {P0, P1} be the partition
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obtained at this first step. We also consider P0 and P1 as “degenerate” Rokhlin
towers of height 1, respectively denoted by τ 1

0 and τ1
1 .

On second step, P0 and P1 are divided in proportions (p, 1− p). The trans-
formation T is defined on the right piece of P0 by sending it linearly onto the left
piece of P1 ; note that both intervals have the same length p(1− p). This gives
a collection of 3 disjoint Rokhlin towers denoted by τ 2

0 , τ2
1 , τ2

2 , with respective
heights 1, 2, 1 (see figure 1.1).

After step n, we get (n + 1) towers τn
0 , . . . , τn

n , with respective heights
(

n
0

)

, . . . ,
(

n
n

)

, the width of τn
k being pn−k(1 − p)k. Denote bu F n

k the base
of τn

k . At this step, the transformation T is defined on the whole space except
the top of each stack. We then divide each stack in proportions (p, 1 − p), and
define T on the right piece of the top of τ n

k by sending it linearly onto the left
piece of the base F n

k+1 of τn
k+1 (both have the same length pn−k(1 − p)k+1).

Repeting recursively this construction, T is finally defined almost every-
where, and clearly preserves the measure µ.
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Figure 1: Cutting and stacking construction of the Pascal adic transformation

It is well-known (see e.g. the proofs given in [2]) that T is ergodic and has
zero entropy.

1.2 Loose Bernoullicity

In this section and in 2.1, we consider a general dynamical system (X,A , µ, T ),
where T is an invertible measure-preserving transformation of the Lebesgue
probability space (X,A , µ). The notion of loose Bernoullicity has been intro-
duced by Feldman in 1976 ([1]), then used by Ornstein, Rudolph and Weiss ([3])
to develop the study of Kakutani equivalence for measure preserving transfor-
mations. In the zero-entropy case, saying that a transformation T is loosely
Bernoulli is equivalent to say that T is isomorphic to a transformation induced
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by an irrational rotation. The characterization of loose Bernoullicity given by
Feldman makes use of the so-called “P-name” of a point x.

Let P = {P0, . . . , Pk} be a finite measurable partition of (X,A , µ). For

x ∈ X, we set P(x)
def
= j ∈ {0, . . . , k} if x ∈ Pj . For m < n in

�
, we define the

P-name of x (from m to n) by

P|nm(x)
def
= jmjm+1 · · · jn,

where, for each m ≤ i ≤ n, ji
def
= P(T ix). The entire P-name of x is the

doubly-infinite sequence P|+∞
−∞(x).

To define the property of being loosely Bernoulli, Feldman introduced the
f distance between finite words. Let V = v1 · · · vl and w = w1 · · ·wl be two
words of length l on the same alphabet. The f distance between v and w is
defined by

f(v, w)
def
=

l − s

l
,

where s is the greatest integer in {0, . . . , l} such that we can find 1 ≤ i1 < i2 <
· · · < is ≤ l and 1 ≤ j1 < j2 < · · · < js ≤ l with vir = wjr (r = 1, . . . , s).

Definition 1.1 Let T be a zero-entropy measure preserving transformation on
the probability space (X,A , µ), and let P be a finite measurable partition of
X. The process (P, T ) is said to be loosely Bernoulli (LB) if for all ε > 0 and
for all sufficiently large l, we can find A ⊂ X with µ(A) > 1 − ε such that

∀x, y ∈ A, f
(

P|l0(x),P|l0(y)
)

< ε.

The transformation T is said to be LB if for each finite partition P the
process (P, T ) is LB.

Remark – In order to prove that a transformation T is LB, it is enough to
verify that (P, T ) is LB for some generating partition P.

1.3 Main result

Theorem 1.2 The Pascal-adic transformation is loosely Bernoulli.

2 Proof of the loose-Bernoullicity

2.1 Equivalence of loose-Bernoullicity with seemingly weaker

properties

Lemma 2.1 Suppose that for all ε > 0 and for all sufficiently large l, we can
find B ⊂ X × X with µ ⊗ µ(B) > 1 − ε such that

∀(x, y) ∈ B, f
(

P|l0(x),P|l0(y)
)

< ε.

then the process (P, T ) is LB.
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Proof — Given ε > 0, let B ⊂ X × X with µ ⊗ µ(B) > 1 − ε be such that

∀(x, y) ∈ B, f
(

P|l0(x),P|l0(y)
)

< ε/2.

We can find x ∈ X such that µ(Bx) > 1 − ε, where

Bx
def
= {y ∈ X | (x, y) ∈ B}.

But, because of the triangular inequality for f , for all y and y ′ in Bx we have

f
(

P|l0(y),P|l0(y
′)
)

< ε.

Thus, the definition of LB is satisfied, with A
def
= Bx. ❏

Lemma 2.2 Suppose that for all ε > 0 and for µ ⊗ µalmost every (x, y) ∈
X × X, we can find an integer l(x, y) ≥ 1 such that

f
(

P|
l(x,y)
0 (x),P|

l(x,y)
0 (y)

)

< ε.

then the process (P, T ) is LB.

Proof — Let us fix ε > 0. For µ ⊗ µ-almost every (x, y) ∈ X × X, we define
l(x, y) as the smallest integer k ≥ 1 such that f

(

P|k0(x),P|k0(y)
)

< ε/3. Since
µ ⊗ µ(l(x, y) < ∞) = 1, there exists n ∈ � ∗ such that

µ ⊗ µ(l(x, y) ≥ n) < ε2/3.

For any l > 3n/ε, we consider

Ml
def
=

1

l

l−1
∑

k=0

�
{l(T kx,T ky)≥n}.

Using Markov’s inequality and the fact that T preserves the measure µ, one
can easily check that

µ ⊗ µ(Ml ≥ ε/3) ≤
E(Ml)

ε/3
<

ε2/3

ε/3
= ε.

Therefore, the set B
def
= {Ml < ε/3} ⊂ X × X is such that µ ⊗ µ(B) > 1 − ε.

Let us fix (x, y) ∈ B. We want to show that f
(

P|l0(x),P|l0(y)
)

< ε.
We say that k ∈ {0, · · · , l−1} is bad if l(T kx, T ky) > n. Since (x, y) ∈ B, there
are less than lε/3 such k.

We define (ji)i≥0 and (ri)i≥0 recursively by j0 = r0
def
= inf {r ≥ 0 | r is not bad},

and for i ≥ 1 such that ji−1 ≤ l − n,

ri = inf
{

r ≥ 0 | ji−1 + l(T ji−1x, T ji−1y) + r is not bad
}

ji = ji−1 + l(T ji−1x, T ji−1y) + ri
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Figure 2: Covering of {0, · · · , l} with good intervals and bad points.

We denote by f the greatest index i such that ji is defined: l − jf < n.
Recall the definition of f .

(l + 1) f
(

P|l0(x),P|l0(y)
)

≤

f−1
∑

i=0

(ji+1 − ji) f
(

P|
ji+1

ji
(x),P|

ji+1

ji
(y)

)

+ (l − jf )

≤

f−1
∑

i=0

l(T jix, T jiy) f
(

P|
ji+l(T jix,T jiy)
ji

(x),P|
ji+l(T jix,T jiy)
ji

(y)
)

+

f−1
∑

i=0

ri + (l − jf )

=

f−1
∑

i=0

l(T jix, T jiy) f
(

P|
l(T ji x,T jiy)
0 (T jix),P|

l(T ji x,T jiy)
0 (T jiy)

)

+

f−1
∑

i=0

ri + (l − jf )

≤
ε

3

f−1
∑

i=0

l(T jix, T jiy) +
lε

3
+ n < (l + 1)ε.

Therefore, we proved that for all sufficiently large l, we can find B ⊂ X × X
with µ ⊗ µ(B) > 1 − ε such that ∀(x, y) ∈ B, f

(

P|l0(x),P|l0(y)
)

< ε. We
conclude with Lemma 2.1. ❏

2.2 Some lemmas on the Pascal adic transformation

From now on, T is the Pascal adic transformation described in section 1.1, and
P is the partition {P0, P1} given by the first step of the cutting-and-stacking
construction. For x ∈ X and n ≥ 1, we define kn(x) as the element of {0, . . . , n}
telling in which tower of the level n x lies: for each n ≥ 1, x ∈ τ n

kn(x).

Lemma 2.3 P is a generating partition for the system (X,A , µ, T ), i.e.

+∞
∨

k=−∞

T k
P = A .
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Proof — As in [2], for each n ≥ 1, we define the basic blocks of level n Bn,k

(0 ≤ k ≤ n), which are words on the alphabet {0, 1}, by the following induction

: Bn,0
def
= 0, Bn,n

def
= 1, and for 1 ≤ k ≤ n − 1,

Bn,k
def
= Bn−1,k−1Bn−1,k.

It is straightforward to verify that Bn,k is the P-name of length
(

n
k

)

of any
point x lying in the base F n

k of τn
k . We are now going to prove by induction

on n that Bn,k characterizes the base of τn
k . More precisely, for any n ≥ 2 and

1 ≤ k ≤ n − 1,

if P|
(n

k )−1

0 (x) = Bn,k, then x ∈ F n
k . (1)

Indeed, (1) is clearly satisfied for n = 2. Next, suppose that (1) is satisfied for

n − 1, and pick an x such that P|
(n

k )−1

0 (x) = Bn,k (1 ≤ k ≤ n − 1). First,
assume that 2 ≤ k ≤ n − 2. We have then

P|
(n−1

k−1 )−1

0 (x) = Bn−1,k−1, (2)

so that x ∈ F n−1
k−1 , and

P|
(n−1

k )−1

0 (T (n−1

k−1 )x) = Bn−1,k, (3)

which implies T (n−1

k−1 )x ∈ F n−1
k . Thus, after climbing the tower τn−1

k−1 , the image

of x goes to the next tower τn−1
k , which is possible only if x ∈ F k

n (otherwise,
the image of x would go back to F n−1

k−1 ). For the case k = 1, we first have to
notice that

∀m ≥ 2, ∀1 ≤ j ≤ m − 1, Bm,j begins with “0” and ends with “1”. (4)

(We leave to the reader the verification of (4) by induction on m.) Now, if
P|n−1

0 (x) = Bn,1 = 0Bn−1,1, we know that Tx ∈ F n−1
1 because (1) is true for

n − 1, and then we can tell that x ∈ F n−1
0 : otherwise, the letter preceeding

Bn−1,1 would be “1”. This yields x ∈ F n
1 . The case k = n − 1 is similar.

Now, for a fixed n ≥ 1 we observe that the entire P-name of any point x is a
concatenation of basic blocks of level n. Because of (1), this decomposition into
basic blocks Bn,k is unique, and knowing the P-name of x gives for any n the
value of kn(x) and tells us in which rung of τn

kn(x) x lies. But the partition Qn of
X into rungs of towers τn

k , 0 ≤ k ≤ n is constituted of intervals whose maximal
width is max(p, 1 − p)n ; moreover Qn+1 refines Qn. Therefore

∨

n≥1 Qn = A .
❏

Lemma 2.4 For µ-almost every x ∈ X, we have

kn(x)

n
−−−−→
n→+∞

1 − p. (5)
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Figure 3: Representing kn(x) as the sum of n independent Bernoulli random
variables.

Proof — Suppose that x lies in tower k ∈ {0, . . . ,m} at level m (x ∈ τ m
k ). Then,

at level (m + 1), x lies either in tower k or tower (k + 1), with probability p,
1−p respectively. Therefore, kn(x) is the sum of n independent and identically
distributed Bernoulli random variables (Xm){1≤m≤n} with P (Xm = 0) = p =
1 − P (Xm = 1).
By the law of large numbers, we obtain that for µ-almost every x ∈ X,
kn(x)

n
−−−−→
n→+∞

E[Xm] = 1 − p. ❏

Let r ≥ 1 be a fixed interger. We consider each tower τ n
k as a stacking of 2r

blocks which are pieces of towers of level n − r.

Lemma 2.5 For µ ⊗ µ-almost every (x, y) ∈ X × X, we can find arbitrarily
large n such that

kn(x) = kn(y), (6)

and x and y are both in the first block of level (n − r) in τ n
kn(x).

Proof — We have seen in the previous lemma that km(x) =
∑m

i=1 Xi and
km(y) =

∑m
i=1 Yi, where (Xi){1≤i≤m} and (Yi){1≤i≤m} are independent and

identically distributed Bernoulli random variables with parameter p. We want
to prove that we can find arbitrarily large m such that km(x) = km(y) and
Xm+1, Xm+2, · · · , Xm+r and Ym+1, Ym+2, · · · , Ym+r are equal to 1. One can
easily verify that km(x) − km(y) =

∑m
i=1(Xi − Yi) is a symmetric random

walk and is thus recurrent. Hence, we can find arbitrarily large m such that
km(x) = km(y). Let us call m1(x, y) < m2(x, y) < · · · such integers m and
consider the events (Aj)j≥1 defined by

Aj = {Xmj+1 = · · · = Xmj+r = Ymj+1 = · · · = Ymj+r = 1}.

Using the strong Markov property, we can check that

• for any j ≥ 1, P (Aj) = (1 − p)2r > 0;

• (Ajr)j≥1 are independent (because mr(j+1) − mrj ≥ r for all j ≥ 1).

Therefore, we can find arbitrarily large mj such that kmj
(x) = kmj

(y) and Aj

happens. ❏
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2.3 Conclusion

Because of lemma 2.3, to achieve the proof of theorem 1.2 it is enough to show
that the process (P, T ) is LB. For this, we are going to verify that (P, T )
satisfies the hypotheses of lemma 2.2. Given ε > 0, choose an integer r such
that (1 − p)r < ε/2. Let (x, y) ∈ X × X be such that

• kn(x)
n

−−−−→
n→+∞

1 − p;

• there exist arbitrarily large n satisfying kn(x) = kn(y), and x and y are
both in the first block of level (n − r) in τ n

kn(x).

(The preceding lemmas tell us that these properties are satisfied for µ⊗µ-almost
all (x, y).) Let us consider such an n, and note k for kn(x). Observe that if
n is large enough, the height of the first (n − r)-block of τ n

k , in which both x
and y lie, is very small compared to the height of τ n

k . Indeed, the height of this

(n − r)-block is
(

n−r
k−r

)

, and we have

(

n−r
k−r

)

(

n
k

) =
k(k − 1) · · · (k − r + 1)

n(n − 1) · · · (n − r + 1)

∼ (1 − p)r as n → +∞.

Thus, if n is chosen large enough, and if we set l
def
=

(

n
k

)

, both P|l0(x) and
P|l0(y) begin with a suffix of Bn,k whose length is greater than (1 − ε/2)l.

<   l/2ε
B

n,k

l

0

0

y

x

l

Figure 4: Coupling of large P-names.

It is then easy to find a common subsequence of P|l0(x) and P|l0(y) whose
length is greater than (1 − ε)l, which gives

f
(

P|l0(x),P|l0(y)
)

< ε.

❏

3 Open questions

So far, very few ergodic properties of the Pascal adic transformation are known.
Many important questions concerning its spectral properties remain open ; in
particular it is not known whether it is weakly mixing or not.
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More closely related to the present work, we can point out that the class of
zero-entropy and loosely Bernoulli transformations contains several interesting
subclasses : rank one, finite rank, local rank one (where rank one =⇒ finite

rank =⇒ local rank one =⇒ loosely Bernoulli). To which of these subclasses
do the Pascal adic transformation belong ? Although the cutting and stacking
construction suggests that it is not of local rank one, even proving that it is not
rank one seems to be a difficult question.
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