
2-FOLD AND 3-FOLD MIXING: WHY 3-DOT-TYPE COUNTEREXAMPLES
ARE IMPOSSIBLE IN ONE DIMENSION

THIERRY DE LA RUE

Abstract. V.A. Rohlin asked in 1949 whether 2-fold mixing implies 3-fold mixing for a sta-
tionary process (ξi)i∈Z, and the question remains open today. In 1978, F. Ledrappier exhibited
a counterexample to the 2-fold mixing implies 3-fold mixing problem, the so-called 3-dot system,
but in the context of stationary random fields indexed by Z2.

In this work, we first present an attempt to adapt Ledrappier’s construction to the one-
dimensional case, which finally leads to a stationary process which is 2-fold but not 3-fold
mixing conditionally to the σ-algebra generated by some factor process. Then, using arguments
coming from the theory of joinings, we will give some strong obstacles proving that Ledrappier’s
counterexample can not be fully adapted to one-dimensional stationary processes.

1. Introduction: Rohlin’s multifold mixing problem and Ledrappier’s
two-dimensional counterexample

The following work is based on two recent results concerning Rohlin’s multifold mixing problem
which are contained in [17] and [19]. It seemed to me interesting to put these results together
and show them in a different light, emphasizing mainly on the underlying ideas rather than on
technical details.

The object of our study is a stochastic process, that is to say a family ξ = (ξi)i∈Z of random
variables indexed by the set of integers, and we will always assume that these random variables
take their values in a finite alphabet A. If two integers i ≤ j are given, we will denote by ξj

i the
finite sequence (ξi, ξi+1, . . . , ξj). Obvious generalization of this notation to the case where i = −∞
or j = +∞ will also be used.

We are more particularly interested in the case where the stochastic process is stationary, which
means that the probability of observing a given cylindrical event E (i.e. an event depending only
on finitely many coordinates) at any position i ∈ Z does not depend on i:

(1) ∀` ≥ 0, ∀E ⊂ A`+1, ∀i ∈ Z, P
(
ξi+`
i ∈ E

)
= P

(
ξ`
0 ∈ E

)
.

Another way to characterize the stationarity of the process is to say that its distribution is invariant
by the coordinate shift: Let T : AZ → A

Z be the transformation defined by T (ξ) = ξ̃, where for
all i ∈ Z, ξ̃i := ξi+1. Then the stochastic process ξ is stationary if and only if the distribution of
T (ξ) is the same as the distribution of ξ.

The stochastic process ξ is said to be mixing if, considering two windows of arbitrarily large
size `, what happens in one window is asymptotically independent of what happens in the second
window when the distance between them tends to infinity:

(2) ∀` ≥ 0, ∀E1, E2 ⊂ A`+1, P
(
ξ`
0 ∈ E1, ξ

p+`
p ∈ E2

)
−P

(
ξ`
0 ∈ E1

)
P

(
ξp+`
p ∈ E2

)
−−−→
p→∞

0.

1.1. Rohlin’s question. In 1949, V.A. Rohlin [14] proposed a strengthening of the previous
definition involving more than two windows: ξ is said to be 3-fold mixing if

(3) ∀` ≥ 0, ∀E1, E2, E3 ⊂ A`+1,

P

(
ξ`
0 ∈ E1, ξ

p+`
p ∈ E2, ξ

p+q+`
p+q ∈ E3

)
−P

(
ξ`
0 ∈ E1

)
P

(
ξp+`
p ∈ E2

)
P

(
ξp+q+`
p+q ∈ E3

)
−−−−−→
p,q→∞

0.
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A straightforward generalization to k windows naturally gives rise to the property of being k-fold
mixing. To avoid any confusion, we will henceforth call the classical mixing property defined
by (2): 2-fold mixing1.

Rohlin asked whether any stationary process which is 2-fold mixing is also 3-fold mixing. This
question is still open today, but a large number of mathematical works have been devoted to the
subject. Many of these works show that 2-fold mixing implies 3-fold mixing for special classes of
stationary processes (see e.g. [13] and [22] for Gaussian processes, [7] for processes with singular
spectrum, [9] and [20] for finite-rank processes).

1.2. Ledrappier’s counterexample in 2 dimensions: the 3-dot system. In the opposite
direction, Ledrappier [12] produced in 1978 a counterexample showing that in the case of stationary
processes indexed by Z2 (we should rather speak of stationary random fields in this context), 2-fold
mixing does not necessarily imply 3-fold mixing. Here is a description of his example: Consider

G :=
{

(ξi,j) ∈ {0, 1}Z
2

: ∀(i, j), ξi,j + ξi+1,j + ξi,j+1 = 0 mod 2
}

.

Let us describe a probability law µ on G by the way we pick a random element in G: First,
use independent unbiased coin tosses to choose the ξi,0 on the horizontal axis (one coin toss
for each i ∈ Z: these random variables are independent). Now, note that the “3-dot rule”
ξi,j + ξi+1,j + ξi,j+1 = 0 mod 2 for each (i, j) completely determines the coordinates ξi,j on the
upper-half plane j ≥ 0. It remains to choose the ξi,j for j < 0. For this, observe that we have yet
no constraint on ξ0,−1. We choose it with an unbiased coin toss, and then the entire line ξ−1,j is
completely determined by the 3-dot rule. To complete the whole plane, we just have to pick each
of the ξ0,j (j < −1) with a coin toss, and then inductively fill each horizontal line with the 3-dot
rule.

01 0 0 0 01 1
1

0

1
0

1 0 0 1 1 1 1 0 1
1 0 1 0 0 0 1 1 0
1 1 1 0 0 1 0 1 1
0 0 1 0 1 1 1 0 1

1110 0 0 1 1
0100 0 0 0 1
0111 1 1 1 1

Figure 1. Generation of a random configuration in G. First, use independent
coin tosses to choose the values of the shaded cells, then apply the 3-dot rule to
complete the others: Three adjacent cells disposed as the three dotted ones must
contain an even number of 1’s.

The addition mod 2 on each coordinate turns G into a compact Abelian group. We let the
reader check that the probability law µ defined above on G is invariant by addition of an arbitrary
element of G, thus µ is the unique normalized Haar measure on G. Since any shift of coordinates
in Z2 is an automorphism of the group G, such a shift preserves µ. Hence µ turns (ξi,j) into a
stationary random field.

The definition of k-fold mixing for a stationary random field is formally the same as in the case
of processes, except that a window is no longer an interval on the line but a square in the plane:
{(i0 + i, j0 + j) : 0 ≤ i, j ≤ `} for some (i0, j0) ∈ Z2 and some ` ≥ 0. Let us sketch a geometric
argument showing why the 2-fold mixing property holds for (ξi,j). Starting with the cells on the

1We must point out that in Rohlin’s article, the definition of k-fold mixing originally involved k + 1 windows,
thus the classical mixing property was called 1-fold mixing. However it seems that the convention we adopt here is
used by most authors, and we find it more coherent when translated in the language of multifold self-joinings (see
section 3.1).
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horizontal axis and the lower-half vertical axis filled with independent coin tosses , we observe
that, when filling the other cells using the 3-dot rule,

• the region R1 := {(i, j) : i < 0, 0 < j < −i} only depends on the cells (i, 0), for i < 0;
• the region R2 := {(i, j) : j < 0, 0 < i < −j} only depends on the cells (0, j), for j < 0;
• the region R3 := {(i, j) : 0 < i, 0 < j} only depends on the cells (i, 0), for i ≥ 0. (See

Figure 2.)

These three regions are therefore independent. Now, if we take two windows of size `, and if the
distance between them is large enough (“large enough” depending on `), it is always possible to
shift the coordinates in such a way that each of the shifted windows entirely lies in one of these
three regions, and not both in the same region. The two shifted windows are then independent,
and since µ is preserved by coordinate shift, this means that the two windows we started with are
also independent.

R1
R3

R2

Figure 2. 2-fold mixing for the 3-dot system: If the distance between them is
large enough, the two square windows can be shifted in such a way that one lies
in one of the three colored regions, and the other one in another, independent,
region.

It remains to see why Ledrappier’s example is not 3-fold mixing. For this, apply the 3-dot rule
from corner (i, j), from corner (i + 1, j) and from corner (i, j + 1), then add the three equalities
(see Figure 3). In the sum, the random variables ξi+1,j , ξi+1,j+1 and ξi,j+1 are counted twice,
thus they vanish since we work modulo 2. We get the following equality, which could be called
the scale-2 3-dot rule:

(4) ξi,j + ξi+2,j + ξi,j+2 = 0 mod 2.

A straightforward induction then shows that for any n ≥ 0, the scale-2n 3-dot rule holds:

(5) ξi,j + ξi+2n,j + ξi,j+2n = 0 mod 2.

But this shows that the three windows of size 1 {(i, j)}, {(i + 2n, j)} and {(i, j + 2n)} are always
far from being independent, although the distance between them can be made arbitrarily large.
Hence the random field ξ is not 3-fold mixing.

2. Attempt to construct a 3-dot-type one-dimensional process

2.1. Block construction of a 2-fold but not 3-fold mixing process. In this section we
describe a naive attempt to mimic the 3-dot construction on a one-dimensional process. Our
process will take its values in the same alphabet A = {0, 1} as for Ledrappier’s example, and we
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(i, j)

(i, j + 1)

(i + 1, j)

Figure 3. Applying the 3-dot rule from three different corners (i, j), (i + 1, j)
and (i, j + 1), and adding the three equalities gives the scale-2 3-dot rule.

start by randomly picking the two random variables ξ0 and ξ1 with two independent unbiased coin
tosses : ξ0 and ξ1 are independent, and each one is equal to 1 with probability 1/2. Then, we set

ξ2 := ξ0 + ξ1 mod 2.

Each random variable ξi is called a 0-block, and the triple (ξ0, ξ1, ξ2) is called a 1-block. We pick
the second 1-block (ξ3, ξ4, ξ5) in the same way as the first one, but independently. The third
1-block (ξ6, ξ7, ξ8) is now set to be the pointwise sum of the first two 1-blocks:

ξ6 := ξ0 + ξ3 mod 2,

ξ7 := ξ1 + ξ4 mod 2,

ξ8 := ξ2 + ξ5 mod 2.

Observe that this third 1-block follows the same distribution as the first two: ξ6 and ξ7 are two
independent Bernoulli random variables with parameter 1/2, and ξ8 is the sum mod 2 of these
variables. Note also that the third 1-block is independent of the first one, independent of the
second one, but of course not independent of the first two together. The 9-tuple (ξ0, ξ1, . . . , ξ8) is
called a 2-block.

We can repeat this procedure inductively to construct k-blocks for each k ≥ 0: Suppose that
for some k we already have constructed the first k-block, which is the 3k-tuple (ξ0, . . . , ξ3k−1).
Then, choose the second k-block (ξ3k , . . . , ξ2×3k−1) with the same probability distribution, but
independently of the first one, and set the third k-block (ξ2×3k , . . . , ξ3k+1−1) to be the pointwise
sum of the first two k-blocks:

(6) ξ2×3k+j := ξj + ξ3k+j mod 2 (0 ≤ j ≤ 3k − 1).

first
2−block

0 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0 1 1 11 0 1 0 0 0 0

1−block
first

1−block
second

1−block
third

second
2−block

third
2−block

first
3−block

Figure 4. Block construction of a stochastic process: The shaded coordinates
are given by independent coin tosses . The non-shaded coordinates are computed
from the shaded ones by 3-dot-type rules.

This inductive procedure gives the construction of a stochastic one-dimensional process (ξi)i≥0.
(This construction can easily be extended to a process indexed by Z: Set the negative coordinates
independently of the nonnegative ones by a similar symmetric construction.) Let us sketch the
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proof that our process is 2-fold mixing. For this, we use the two following facts, whose verification
is left to the reader:

• Two different k-blocks are always independent.
• Call a k-overlapping the concatenation of two consecutive (k − 1)-blocks lying in two dif-

ferent k-blocks. Any k-overlapping is independent of any concatenation of two consecutive
(k − 1)-blocks lying in other k-blocks.

Now, take two windows of fixed size `, and let k be an integer such that ` ≤ 3k−1. Then, if the
distance between the two windows is greater than 3k, either they lie in two different k-blocks, or
at least one of them lie in a k-overlapping. In both cases the two windows are independent.

However, the stochastic process ξ is clearly not 3-fold mixing, since for any k ≥ 0, we have

ξ0 + ξ3k + ξ2×3k = 0 mod 2.

This, of course, does not make ξ a counterexample to Rohlin’s question: The process we have just
constructed is not a stationary one! Indeed, the pattern ‘111’ for example can not be seen in the
sequence ξ0ξ1ξ2, but it can occur in the sequence ξ1ξ2ξ3 with probability 1/8.

2.2. How to make the construction stationary. The example described in the preceding
section can be turned into a stationary process by applying some trick which is presented here.
The process is still inductively constructed with k-blocks which follow the same distribution as
before. The difference consists in the way k-blocks are extended to (k + 1)-blocks. Observe that
a k-block lying in a given (k + 1)-block can have three positions, which will be denoted by ‘0’
(the first k-block in the (k + 1)-block), ‘1’ (the second one) and ‘2’ (the third one). We are
going to define the increasing family of k-blocks (k ≥ 0) containing the coordinate ξ0 by using a
sequence S = (Sk)k≥0 of independent, uniformly distributed random variables, taking their values
in {0, 1, 2}.

We start the construction by picking the first 0-block ξ0 in the usual way, with a coin toss.
Now, we have to decide whether this 0-block is in the first, second or third position in the 1-block.
This is done by using the first random variable S0. Next, we complete the 1-block by tossing a
coin for the first missing variable, and setting the last one to be the sum mod 2 of the two others.
The extension from the k-block to the (k + 1)-block containing ξ0 goes on in a similar way: Once
we have determined the k-block, we use the random variable Sk to decide whether this k-block is
in the first, second or third position in the (k + 1)-block. Then the first missing k-block is chosen
independently, and the last one is set to be the pointwise sum of the two other k-blocks.

1 11 0 0 0 0 1 001 11 1 01 1 10 1 1 1 0 0 10 1

ξ0

Figure 5. Beginning of the construction with the skeleton sequence S0 = 1,
S1 = 2, and S2 = 0.

The embedding of k-blocks in k + 1-blocks is called the skeleton of the process, and the i.i.d.
sequence (Sk)k≥0 coding this embedding is the skeleton sequence. Since almost every realization
of the skeleton sequence contains infinitely many 1’s, the preceding procedure applied for all k ≥ 0
gives rise to k-blocks extending arbitrarily far away from 0 on both sides with probability one.
This defines the whole process ξ = (ξi)i∈Z.

Let us see how the skeleton sequence evolves when a coordinate shift is applied to the process
ξ. It is not difficult to convince oneself that a shift of one coordinate to the left corresponds to the
addition of ‘1’ on the 3-adic number defined by the sequence (Sk). (Write the sequence from right
to left, and see it as a “number” written in base 3 with infinitely many digits, S0 being the unitary
digit; then add ‘1’ to the sequence as you would do it for an ordinary number: Add ‘1’ to S0, and
if S0 reaches 3, then set S0 = 0 and add ‘1’ to S1, and so on.) Observe that the distribution of the
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skeleton sequence is the same after this addition of ‘1’, hence the distribution of the skeleton is
invariant under the action of the coordinate shift. But once the skeleton is fixed, the distribution
of the process is entirely determined by giving the distribution of k-blocks for every k ≥ 0, which
is the distribution described in the preceding section. Therefore the whole distribution of the
process is invariant under the coordinate shift, and the process we get now is stationary.

01 11 1 01 1 10 1 1 1 0 0 10 11 11 0 0 0 0 1 0

t = 0, S = · · · 0 2 1

t = 1, S = · · · 0 2 2

t = 2, S = · · · 1 0 0

t = 3, S = · · · 1 0 1

Figure 6. Action of the coordinate shift on the skeleton sequence. The arrows
denote the position of ξ0 at successive times during the iteration of the shift.

Unfortunately, making the process stationary has a cost: We have lost the 2-fold mixing prop-
erty! Indeed, if for example we look at the rightmost coordinate S0 of the skeleton sequence, we
see that any realization of the process ξ gives rise for S0 to the periodic sequence

· · · 012012012 · · ·
So, the process we get when we only observe S0 is periodic. But if ξ was 2-fold mixing, then every
factor of ξ (that is to say, every stationary process which can be seen as a function of ξ, such as
the process generated by S0 for example2) would also be 2-fold mixing.

2.3. A relative counterexample to Rohlin’s question. The stationary process generated by
the whole skeleton sequence S is well-known in ergodic theory, and is called the 3-adic odometer.
(Be careful: S does not take its values in a finite alphabet, it has infinitely many coordinates
taking their values in {0, 1, 2}.) This process, which has appeared as a factor of ξ in our new
construction, is far from being mixing, since each of its coordinates is periodic. However, we can
notice some interesting facts regarding the 2-fold and 3-fold mixing properties of ξ. Namely, once
the skeleton is fixed (that is to say, conditionally to the σ-algebra generated by S), the mixing
properties of ξ are similar to those of the non-stationary process constructed in Section 2.1. Thus,
the process ξ is 2-fold, but not 3-fold mixing relatively to the factor σ-algebra generated by S.
(More details on relative k-fold mixing can be found in [17].)

It is a common idea in abstract ergodic theory to say that the study of stationary processes
relatively to their factor σ-algebras gives rise to similar results as in the absolute study (one of
the best examples of this fact is Thouvenot’s relative version of Ornstein’s isomorphism theorem
[21]; another example is the proof of Proposition 3.2 presented below). Therefore, the process that
we have just constructed could make us think that a one-dimensional counterexample to Rohlin’s
question should exist. However, we are going to show in the next Section that, if such a process
exists, it must be of a different nature than this one, or than Ledrappier’s counterexample in Z2.

3. Obstruction to the construction of a 3-dot-type one-dimensional
counterexample

3.1. Multifold mixing and self-joinings. We need now to present a powerful tool which has
been introduced in ergodic theory by Furstenberg [4]: The notion of self-joining of a stationary
process. Let ξ = (ξi)i∈Z be a stationary process taking its values in the alphabet A, and denote

2We leave as an exercise for the reader the verification of the fact that the skeleton sequence is indeed a function
of ξ.



2-FOLD AND 3-FOLD MIXING 7

by µ its probability distribution on AZ. Take ξ′ another process defined on the same probability
space, taking its values in the same alphabet A, and following the same distribution µ. Then we
can consider the joint process (ξ, ξ′), taking its values in the Cartesian square A×A. If this joint
process is still stationary, then we say that its distribution λ on AZ ×AZ ≈ (A×A)Z is a 2-fold
self-joining of ξ. In other words, a 2-fold self-joining of ξ is a probability distribution on AZ×AZ
whose marginals are both equal to µ, and which is invariant under the coordinate shift.

Let us see some simple examples of such self-joinings. The first idea is to take the two processes
ξ and ξ′ independent of each other. Then we get µ⊗µ as our first example of a 2-fold self-joining.
Another very simple example is obtained by taking ξ′ = ξ, and we denote by ∆0 (“diagonal
measure”) the 2-fold self-joining of ξ concentrated on the diagonal of AZ × AZ. This can be
generalized by considering the case where ξ′ is equal to a shifted copy of ξ: We fix some p ∈ Z,
and we set ξ′i := ξi+p for each i ∈ Z. We denote by ∆p the shifted diagonal measure obtained in
this way.

The set J2(ξ) of all 2-fold self-joinings of ξ is endowed with the metrizable topology defined by
the following distance:

d(λ1, λ2) :=
∑
n≥0

∑
n′≥0

1
2n+n′

|λ1(ξ ∈ Cn, ξ′ ∈ Cn′)− λ2(ξ ∈ Cn, ξ′ ∈ Cn′)| ,

where (Cn)n≥0 is the countable collection af all cylinder sets in AZ. This topology (which is
nothing else than the weak topology restricted to the set of 2-fold self-joinings of ξ) turns J2(ξ)
into a compact metrizable topological space. The link with the 2-fold mixing property is now
straightforward: The stationary process ξ is 2-fold mixing if and only if the sequence (∆p) of
shifted diagonal measures converges in J2(ξ) to the product measure µ⊗ µ as p → +∞.

To translate the 3-fold mixing property into the language of joinings, we have to generalize the
notion of self-joining to the case where 3 processes ξ, ξ′ and ξ′′ with the same distribution µ are
involved. This naturally leads to the definition of a 3-fold self-joining of ξ. (We can of course
define an r-fold self-joining of ξ for any r ≥ 2, but for our purpose the cases r = 2 and r = 3
will suffice.) The set J3(ξ) is also turned into a compact metrizable space when endowed with the
restriction of the weak topology. Particularly simple and interesting elements of J3(ξ) are again
the product measure µ⊗µ⊗µ and the shifted diagonal measures ∆p,q, p, q ∈ Z, the latter denoting
the distribution of the triple (ξ, ξ′, ξ′′) when for all i ∈ Z,

(7) ξ′i = ξi+p and ξ′′i = ξi+p+q.

The process ξ is 3-fold mixing if and only if the following convergence holds in J3(ξ):

(8) ∆p,q −−−−−−→
p,q→+∞

µ⊗ µ⊗ µ.

Now, let us assume that ξ is a 2-fold mixing stationary process which is not 3-fold mixing.
Then, since ∆p,q does not converge to the product measure, we can find a subsequence ∆pn,qn

converging to some 3-fold self-joining λ 6= µ⊗ µ⊗ µ. But the 2-fold mixing property of ξ tells us
that, under λ, the 3 processes ξ, ξ′ and ξ′′ have to be pairwise independent. Hence, we get the
following conclusion:

Proposition 3.1. If ξ is a 2-fold mixing stationary process which is not 3-fold mixing, then ξ has
a 3-fold self-joining λ 6= µ⊗ µ⊗ µ with pairwise independent coordinates.

3.2. Restriction to zero-entropy processes. The natural question now is whether stationary
processes satisfying the conclusion of Proposition 3.1 can exist. But, without extra requirements,
it is easy to find examples of such pairwise independent self-joinings which are not the product
measure: Let ξ consist of i.i.d. random variables (ξp)p∈Z, taking their values in {0, 1}, each one
with probability 1/2. Take an independent copy (ξ′p)p∈Z of this process and set

ξ′′p := ξp + ξ′p mod 2.

Then the three processes ξ, ξ′ and ξ′′ have the same distribution, are pairwise independent, but
the 3-fold self-joining of ξ we get in this way is not the product measure.
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However, this process is not a counterexample to Rohlin’s question. Indeed, all its coordinates
being independent, ξ is of course k-fold mixing for any k ≥ 2. It was Thouvenot who explained
that this kind of Bernoulli shift situation could be avoided when one studies Rohlin’s question,
because it is always possible to restrict the analysis to the case of zero-entropy stationary processes.
A stationary process ξ = (ξi)i∈Z taking its values in a finite alphabet has zero entropy if and only
if ξ0 is measurable with respect to the past, i.e. with respect to the σ-algebra σ(ξi, i < 0). (Main
definitions and results concerning entropy in ergodic theory can be found e.g. in [2, 5, 8].)

Proposition 3.2. If there exists a stationary process ξ which is 2-fold, but not 3-fold mixing,
then one can find such a counterexample in the class of zero-entropy stationary processes.

Proof. One of the main ingredient to prove this result is the so-called Pinsker σ-algebra (or tail
field) of the process, which is the σ-algebra

Π(ξ) :=
⋂
p∈Z

σ(ξp
−∞) =

⋂
p∈Z

σ(ξ+∞
p ).

The Pinsker σ-algebra of ξ is invariant by the coordinate shift T : (ξn) 7→ (ξ̃n), where ξ̃n := ξn+1.
Therefore, if we choose any Π(ξ)-measurable random variable ζ0, taking its value in a finite
alphabet B, and if we set for all i ∈ Z

ζi := ζ0 ◦ T i,

then the whole stationary process ζ = (ζi)i∈Z is Π(ξ)-measurable. What is remarkable is that
such a process always has zero entropy, and that any stationary process ζ with zero entropy which
is a factor of ξ is automatically Π(ξ)-measurable (see e.g. [5], Theorem 18.6). Besides, Krieger’s
finite generator theorem ensures that it is always possible to find such a factor process ζ, taking its
values in an alphabet B containing only two letters, and generating the whole Pinsker σ-algebra
(nice proofs of Krieger’s theorem can be found in [5], [8], or [16]). We henceforth fix such a process
ζ with

Π(ξ) = σ(ζi, i ∈ Z).

As a factor of ξ, ζ automatically inherits the 2-fold mixing property. It remains to show that if ζ
is 3-fold mixing, then so is ξ.

For this, let us fix three cylinder events E1, E2 and E3, which are measurable with respect to
ξ`
0 for some ` ≥ 0. We have to compute the limit, as p and q go to +∞, of the quantity

P

(
ξ`
0 ∈ E1, ξ

p+`
p ∈ E2, ξ

p+q+`
p+q ∈ E3

)
= E

[
E

[
1ξ`

0∈E1

∣∣ σ(ξ+∞
p )

]
1ξp+`

p ∈E2
1ξp+q+`

p+q ∈E3

]
= E

[(
E

[
1ξ`

0∈E1

∣∣ σ(ξ+∞
p )

]
−E

[
1ξ`

0∈E1
|Π(ξ)

])
1ξp+`

p ∈E2
1ξp+q+`

p+q ∈E3

]
+E

[
E

[
1ξ`

0∈E1
|Π(ξ)

]
1ξp+`

p ∈E2
1ξp+q+`

p+q ∈E3

]
.

The martingale convergence theorem gives

E

[
1ξ`

0∈E1

∣∣ σ(ξ+∞
p )

]
L1

−−−−−→
p→+∞

E

[
1ξ`

0∈E1
|Π(ξ)

]
,

hence the first term can be bounded by ε if p is large enough. We are left with

E

[
E

[
1ξ`

0∈E1
|Π(ξ)

]
1ξp+`

p ∈E2
1ξp+q+`

p+q ∈E3

]
= E

[
E

[
1ξ−p+`

−p ∈E1
|Π(ξ)

]
E

[
1ξ`

0∈E2

∣∣ σ(ξ+∞
q )

]
1ξq+`

q ∈E3

]
,
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and again the martingale convergence theorem allows us to replace E
[
1ξ`

0∈E2

∣∣ σ(ξ+∞
q )

]
with

E

[
1ξ`

0∈E2
|Π(ξ)

]
if q is large enough. We thus have proven

(9) P

(
ξ`
0 ∈ E1, ξ

p+`
p ∈ E2, ξ

p+q+`
p+q ∈ E3

)
−E

[
E

[
1ξ`

0∈E1
|Π(ξ)

]
E

[
1ξp+`

p ∈E2
|Π(ξ)

]
E

[
1ξp+q+`

p+q ∈E3
|Π(ξ)

]]
−−−−−−→
p,q→+∞

0.

Note that in this equation, the expectation can also be written as

E

[
E

[
1ξ`

0∈E1
|Π(ξ)

]
E

[
1ξ`

0∈E2
|Π(ξ)

]
◦ T p

E

[
1ξ`

0∈E3
|Π(ξ)

]
◦T p+q

]
.

Now, if the process ζ generating Π(ξ) is 3-fold mixing, we get that this expectation converges, as
p and q go to +∞, to the product

E

[
E

[
1ξ`

0∈E1
|Π(ξ)

]]
E

[
E

[
1ξ`

0∈E2
|Π(ξ)

]]
E

[
E

[
1ξ`

0∈E3
|Π(ξ)

]]
= P

(
ξ`
0 ∈ E1

)
P

(
ξ`
0 ∈ E2

)
P

(
ξ`
0 ∈ E3

)
,

which means that ξ is also 3-fold mixing. �

Let us make some comment about this proof. The main argument is a nice illustration of the
principle that the behaviour of a stationary process conditionally to one of its factors gives rise
to similar results as in the non-conditioned case. The key notion here is the so-called K-property :
We say that the stationary process ξ has the K-property if its Pinsker σ-algebra Π(ξ) is trivial.
It is easy to show that this K-property implies 3-fold mixing: Just write the preceding proof until
(9) in the case where Π(ξ) is trivial, and you get the result. (In fact, the same argument gives
that the K-property implies k-fold mixing for any k). Now, when a factor ζ of ξ is given, we can
also define the K-property of ξ relatively to ζ (see e.g. [18]), and check that ξ always has the
K-property relatively to its Pinsker σ-algebra: This comes from the fact that any factor of ξ with
zero entropy is Π(ξ)-measurable. But this in turn gives that ξ is 3-fold mixing relatively to Π(ξ):
This is more or less what (9) says. The end of the proof consists in checking that, if ζ is 3-fold
mixing, and if ξ is 3-fold mixing relatively to ζ, then ξ is 3-fold mixing.

Now that we have reduced Rohlin’s problem to the case of zero-entropy processes, we can ask
the question of pairwise independent self-joinings in this zero-entropy class.

Question 3.3. Does there exist a zero-entropy, 2-fold mixing stationary process ξ, and a 3-fold
self-joining λ of ξ for which the coordinates are pairwise independent but which is different from
the product measure?

Note also that if the assumption of 2-fold mixing is dropped, we can again find some counterex-
ample: Take a periodic stationary process ξ taking its values in {0, 1, 2}, where ξ0 is uniformly
distributed in the alphabet, and ξi+1 = ξi + 1 mod 3 for all i ∈ Z. Take an independent copy ξ′

of ξ, and set
ξ′′i := 2ξ′i − ξi mod 3.

Then ξ, ξ′ and ξ′′ share the same zero-entropy distribution, they are pairwise independent but the
3-fold self-joining they define is not the product measure.

3.3. 3-dot-type pairwise independent self-joinings. Let us consider now the two-dimensional
example of Ledrappier from the point of view of self-joinings. The definition of the shifted diagonal
3-fold self-joining ∆p,q is formally the same as in (7), but in this case p and q are both elements
of Z2. Particularly interesting is the sequence ∆pn,qn , where for all n ≥ 0,

pn := (0, 2n) and qn := (2n, 0).

From the relation (5), we see that the sequence ∆pn,qn converges as n → +∞ to the 3-fold self-
joining λ of ξ under which the three coordinates ξ, ξ′ and ξ′′ are pairwise independent (because ξ
is 2-fold mixing), but which is not the product measure since, for all i ∈ Z2,

(10) ξ′′i = ξi + ξ′i mod 2.
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Observe also that, for the non-stationary process constructed in Section 2.1, the sequence of 3-
fold self-joinings ∆3n,2×3n also converges to a joining with pairwise independent marginals which,
by (6), satisfies a relation similar to (10). Since this kind of self-joining seems to appear naturally
when one tries to construct examples which are 2-fold but not 3-fold mixing, we introduce the
(slightly more general) following definition.

Definition 3.4. Let ξ be a stationary process taking its values in a finite alphabet A. We call
3-dot-type self-joining a 3-fold self-joining λ of ξ which has pairwise independent marginals, and
for which there exists a map f : A×A −→ A such that

(11) ∀i ∈ Z, ξ′′i = f(ξi, ξ
′
i) (λ-a.s.).

The result that we shall prove now shows that there is no hope to find a 2-fold but not 3-fold
zero-entropy stationary process which admits a 3-dot-type self-joining: The only 3-dot-type self-
joinings which can be seen in zero entropy are those arising from periodic (therefore non 2-fold
mixing) processes, like in the example presented at the end of Section 3.2.

Theorem 3.5. If the stationary process ξ admits a 3-dot-type self-joining, then

• either ξ is a periodic process,
• or ξ has entropy at least log 2.

The proof of the theorem is based on the following lemma.

Lemma 3.6. Let X, Y and Z be 3 random variables, sharing the same distribution on the finite
alphabet A. Assume that these random variables are pairwise independent, and that there exists
a map f : A×A −→ A such that

(12) Z = f(X, Y ) (a.s.).

Then their common distribution is the uniform distribution on a subset of A

Proof. Taking a subset of A instead of A if necessary, we can assume that each letter of A is seen
with positive probability. Let us fix some y ∈ A, and condition with respect to the event (Y = y).
Since X, Y and Z are pairwise independent, we get for any x, z ∈ A

P(X = x|Y = y) = P(X = x) and P(Z = z|Y = y) = P(Z = z).

But knowing (Y = y), we have the equivalence

(Z = z) ⇐⇒ (f(X, y) = z).

Since X and Z can take the same number of values, we deduce that for any z ∈ A, there exists a
unique x such that

f(x, y) = z,

and that furthemore, this x satisfies

(13) P(X = x) = P(Z = z).

Finally, observe that we can condition on (Y = y) for any y ∈ A, and therefore that (13) holds
for any x and z in A for which we can find a y ∈ A satisfying f(x, y) = z. But since X and Z are
independent, this is true for any x, z ∈ A. �

Proof of Theorem 3.5. Fix some m ≥ 1, and apply Lemma 3.6 with X := ξm−1
0 , Y := ξ′

m−1
0 and

Z := ξ′′
m−1

0 under the 3-dot-type self-joining of ξ: We get that ξm−1
0 is uniformly distributed

on the subset of sequences in Am which are seen with positive probability. Denote by pm the
number of such sequences. The same argument applied with m + 1 in place of m gives that
each of the pm+1 possible sequences of length m + 1 is seen with probability 1/pm+1. Therefore,
any possible sequence of length m has exactly am := pm+1/pm different ways to extend to some
possible sequence of length m+1, and each of the possible extensions has a conditional probability
1/am. Now, observe that since ξ is stationary, the number of possible extensions of a sequence of
length m + 1 can not be greater than the number of possible extensions of the sequence of length
m obtained by removing the first letter, which gives the inequality am+1 ≤ am. Therefore, there
are two cases:
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• Either am = 1 for m large enough, and in this case the process ξ is periodic;
• Or am is always greater than or equal to 2, and then the entropy of ξ is at least log 2.

�

3.4. Difference between dimension one and two. It seems interesting to analyze the result
proved in the preceding section, to see precisely which obstacle prevents us from constructing a
3-dot-type counterexample in dimension one, although it is allowed in dimension two. At which
point does the one-dimensional argument developped above stop applying to the case of dimension
two?

First, note that the reduction of Rohlin’s question to zero-entropy processes is still valid in the
case of two-dimensional random fields: We can still consider in this case the Pinsker σ-algebra
Π(ξ), with respect to which every zero-entropy factor of ξ is measurable, and prove that if ξ is
2-fold but not 3-fold mixing, then this property comes from Π(ξ). (For some presentations of
the Pinsker σ-algebra in the multidimensional case, we refer the reader to [1, 6, 10, 11]. For the
generalization of Krieger’s finite generator theorem to Zd-actions, see e.g. [15, 3].) As far as
Ledrappier’s 3-dot example is concerned, there is no need to take a factor since this stationary
random field already has zero entropy.

Next, Lemma 3.6 gives that if ξ is a finite-valued stationary random field indexed by Z2 ad-
mitting a 3-dot-type self joining, then the distribution of ξ on any finite window is uniform on
all the configurations which are seen with positive probability. And indeed, we can easily check
that this is the case for Ledrappier’s construction (for example, any allowed configuration in a
rectangular `1× `2 window has probability 2−(`1+`2−1)). And this seems to be the point of the ar-
gument where there is a difference between Z and Z2: Although this uniform-probability property
implies periodicity for one-dimensional zero-entropy stationary processes, this is no more true for
two-dimensional stationary random fields, as we can see with Ledrappier’s example.

We can also observe that in the one-dimensional case, if the stationarity property is dropped the
argument fails at the same point: The relative counterexample constructed in Section 2.2, that is
to say the process conditioned on the skeleton sequence, also has the uniform-probability property
(which means in the non-stationary setting that for any i ≤ j, all the possible configurations for
the sequence ξj

i have the same probability). However, this process has zero entropy: There exists
almost surely some k such that Sk = 2, therefore ξ0 lies in the third k-block in its (k + 1)-block.
Then ξ0 can be computed from the first two k-blocks, which are measurable with respect to the
past of the process.

4. Further questions

Many important results have already been presented around Rohlin’s multifold mixing problem.
Most of them consider some special category of stationary processes (e.g. finite-rank processes, or
processes with singular spectrum), and prove that in this category a pairwise-independent 3-fold
self-joining has to be the product measure.

We hope that the work presented here can be the beginning of a slightly different approach:
Consider a stationary process which admits some kind of pairwise-independent 3-fold self-joining
which is not the product measure, and see which other properties on the process this assumption
entails. In this direction, the most natural generalization of the present study should be the
following situation: Take a stationary process ξ which admits a pairwise-independent 3-fold self-
joining λ, and assume that the three coordinates ξ, ξ′ and ξ′′ of this self-joining satisfy

(14) ξ′′ = ϕ(ξ, ξ′) λ-a.s.

for some measurable function ϕ : AZ×AZ → A
Z. Then what can be said on the process ξ? Can

it have zero entropy and be 2-fold mixing?
Since this general question seems to be quite difficult, some more restricted classes of pairwise

independent self-joinings could be considered first, satisfying (14) with some regularity assumption
on ϕ. For example, what happens if under λ, the coordinate ξ′′0 is a function of finitely many
coordinates of ξ and ξ′?
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